28 research outputs found

    Model-independent analysis for determining mass splittings of heavy baryons

    Full text link
    We study the hyperfine mass differences of heavy hadrons in the heavy quark effect theory (HQET). The effects of one-gluon exchange interaction are considered for the heavy mesons and baryons. Base on the known experimental data, we predict the masses of some heavy baryons in a model-independent way.Comment: 14 pages, 1 figur

    Flavored exotic multibaryons and hypernuclei in topological soliton models

    Full text link
    The energies of baryon states with positive strangeness, or anti-charm (-beauty) are estimated in chiral soliton approach, in the "rigid oscillator" version of the bound state soliton model proposed by Klebanov and Westerberg. Positive strangeness states can appear as relatively narrow nuclear levels (Theta-hypernuclei), the states with heavy anti-flavors can be bound with respect to strong interactions in the original Skyrme variant of the model (SK4 variant). The binding energies of anti-flavored states are estimated also in the variant of the model with 6-th order term in chiral derivatives in the lagrangian as solitons stabilizer (SK6 variant). The latter variant is less attractive, and nuclear states with anti-charm or anti-beauty can be unstable relative to strong interactions. The chances to get bound hypernuclei with heavy antiflavors are greater within "nuclear variant" of the model with rescaled model parameter (Skyrme constant e or e' decreased by ~30%) which is expected to be valid for baryon numbers greater than B ~10. The rational map approximation is used to describe multiskyrmions with baryon number up to ~30 and to calculate the quantities necessary for their quantization (moments of inertia, sigma-term, etc.).Comment: 24 pages, 7 table

    Hyperon semileptonic decays and quark spin content of the proton

    Get PDF
    We investigate the hyperon semileptonic decays and the quark spin content of the proton ΔΣ\Delta \Sigma taking into account flavor SU(3) symmetry breaking. Symmetry breaking is implemented with the help of the chiral quark-soliton model in an approach, in which the dynamical parameters are fixed by the experimental data for six hyperon semileptonic decay constants. As a result we predict the unmeasured decay constants, particularly for Ξ0Σ+\Xi^0 \to \Sigma^+, which will be soon measured and examine the effect of the SU(3) symmetry breaking on the spin content ΔΣ\Delta \Sigma of the proton. Unfortunately large experimental errors of Ξ\Xi^- decays propagate in our analysis making ΔΣ\Delta \Sigma and Δs\Delta s practically undetermined. We conclude that statements concerning the values of these two quantities, which are based on the exact SU(3) symmetry, are premature. We stress that the meaningful results can be obtained only if the experimental errors for the Ξ\Xi decays are reduced.Comment: The final version accepted for publication in Phys. Rev. D. 18 pages, RevTex is used with 4 figures include

    Nonleptonic Λb\Lambda_b decays to Ds(2317)D_s(2317), Ds(2460)D_s(2460) and other final states in Factorization

    Full text link
    We consider nonleptonic Cabibbo--allowed Λb\Lambda_b decays in the factorization approximation. We calculate nonleptonic decays of the type ΛbΛcP \Lambda_b \to \Lambda_c P and ΛbΛcV \Lambda_b \to \Lambda_c V relative to BˉdD+P\bar{B}_d \to D^+ P and BˉdD+V\bar{B}_d \to D^+ V where we include among the pseudoscalar states(P) and the vector states(V) the newly discovered DsD_s resonances, Ds(2317)D_s(2317) and Ds(2460)D_s(2460). In the ratio of Λb\Lambda_b decays to Ds(2317)D_s(2317) and Ds(2460)D_s(2460) relative to the Bˉd\bar{B}_d decays to these states, the poorly known decay constants of Ds(2317)D_s(2317) and Ds(2460)D_s(2460) cancel leading to predictions that can shed light on the nature of these new states. In general, we predict the Λb\Lambda_b decays to be larger than the corresponding Bˉd\bar{B}_d decays and in particular we find the branching ratio for ΛbΛcDs(2460)\Lambda_b \to \Lambda_c D_s(2460) can be between four to five times the branching ratio for BˉdD+Ds(2460)\bar{B}_d \to D^+ D_s(2460). This enhancement of Λb\Lambda_b branching ratios follows primarily from the fact that more partial waves contribute in Λb\Lambda_b decays than in Bˉd\bar{B}_d decays. Our predictions are largely independent of model calculations of hadronic inputs like form factors and decay constants.Comment: 16 pages LaTe

    Models for the Polarized Parton Distributions of the Nucleon

    Get PDF
    Polarized deep inelastic scattering (DIS) data are analyzed in leading and next-to-leading order of QCD within the common `standard' scenario of polarized parton distributions with a flavor-symmetric light sea (antiquark) distribution δqˉ\delta\bar{q}, and a completely SU(3)f_f broken `valence' scenario with totally flavor-asymmetric light sea densities (δuˉδdˉδsˉ)(\delta\bar{u}\neq\delta\bar{d}\neq\delta\bar{s}). The latter flavor-broken light sea distributions are modelled with the help of a Pauli-blocking ansatz at the low radiative/dynamical input scales of μLO(NLO)2=0.26\mu_{\rm LO(NLO)}^2=0.26 (0.40) GeV2^2 which complies with predictions of the chiral quark-soliton model and expectations based on the statistical parton model as well as with the corresponding, well established, flavor-broken unpolarized sea (dˉ>uˉ\bar{d}>\bar{u}). Present semi-inclusive DIS data cannot yet uniquely discriminate between those two flavor-symmetric and flavor-broken polarized light sea scenarios.Comment: 39 pages, LaTe

    History of exotic Meson (4-quark) and Baryon (5-quark) States

    Full text link
    I briefly review the history of exotic meson (4-quark) and baryon (5-quark) states, which is rooted in the formalism of Regge pole and duality. There are robust model-independent predictions for the exchange of 4-quark (Baryonium) Regge trajectories in several processes, which are strongly supported by experiment. On the other hand the predictions for the spectroscopy of 4-quark resonances are based on specific QCD inspired models, with some experimental support. The corresponding predictions for the recently discovered exotic baryon (Pentaquark) state are briefly discussed.Comment: 14 pages Latex including 4 eps figures, final version to appear as a topical review in J. Phys.

    Structure and reactions of pentaquark baryons

    Full text link
    We review the current status of the exotic pentaquark baryons. After a brief look at experiments of both positive and negative results, we discuss theoretical methods to study the structure and reactions for the pentaquarks. First we introduce the quark model and the chiral soliton model, where we discuss the relation of mass spectrum and parity with some emphasis on the role of chiral symmetry. It is always useful to picture the structure of the pentaquarks in terms of quarks. As for other methods, we discuss a model independent method, and briefly mention the results from the lattice and QCD sum rule. Decay properties are then studied in some detail, which is one of the important properties of Theta+. We investigate the relation between the decay width and the quark structure having certain spin-parity quantum numbers. Through these analyses, we consider as plausible quantum numbers of Theta+, JP = 3/2-. In the last part of this note, we discuss production reactions of Theta+ which provide links between the theoretical models and experimental information. We discuss photoproductions and hadron-induced reactions which are useful to explore the nature of Theta+Comment: 20 pages, proceedings for the workshop on HADRON PHYSICS, March 7 - 17, (2005) Puri, Indi

    Quark-model study of few-baryon systems

    Get PDF
    We review the application of non-relativistic constituent quark models to study one, two and three non-strange baryon systems. We present results for the baryon spectra, potentials and observables of the NN, NΔ\Delta, ΔΔ\Delta\Delta and NN(1440)^*(1440) systems, and also for the binding energies of three non-strange baryon systems. We make emphasis on observable effects related to quark antisymmetry and its interplay with quark dynamics.Comment: 82 pages, 36 figures, 18 tables. Accepted for publication in Reports on Progress in Physic

    Prospects for Pentaquark Searches in e+ee^+e^- Annihilations and γγ\gamma\gamma Collisions

    Full text link
    Recent strong experimental evidence of a narrow exotic S = +1 baryon resonance, Θ+\Theta^+, suggests the existence of other exotic baryons. We discuss the prospects of confirming earlier experimental evidence of Θ+\Theta^+ and the observation of additional hypothetical exotic baryons in e+ee^+e^- annihilations and γγ\gamma\gamma collisions at LEP and B Factories

    Two-Body B Meson Decays to η\eta and η\eta^{'} -- Observation of BηB\to \eta{'}K$

    Full text link
    In a sample of 6.6 million produced B mesons we have observed decays B -> eta' K, with branching fractions BR(B+ -> eta' K+ = 6.5 +1.5 -1.4 +- 0.9) x 10510^{-5} and BR(B0 -> eta' K0 = 4.7 +2.7 -2.0 +- 0.9) x 10510^{-5}. We have searched with comparable sensitivity for 17 related decays to final states containing an eta or eta' meson accompanied by a single particle or low-lying resonance. Our upper limits for these constrain theoretical interpretations of the B -> eta' K signal.Comment: 12 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN
    corecore