15 research outputs found

    Quantum Phase Transitions for Bosons in One Dimension

    Full text link
    We study the ground state phase diagram and the critical properties of interacting Bosons in one dimension by means of a quantum Monte Carlo technique. The direct experimental realization is a chain of Josephson junctions. For finite-range interactions we find a novel intermediate phase which shows neither solid order nor superfluidity. We determine the location of this phase and study the critical behaviour of the various transitions. For on-site interaction only, we map out the phase diagram as a function of the hopping strength and the chemical potential.Comment: 11 pages, revtex, 2 eps-figure

    Flux Noise near the Berezinskii-Kosterlitz-Thouless Transition

    Full text link
    We study the flux noise in Josephson junction arrays in the critical regime above the Berezinskii-Kosterlitz-Thouless transition. In proximity coupled arrays a local ohmic damping for the phases is relevant, giving rise to anomalous vortex diffusion and a dynamic scaling of the flux noise in the critical region. It shows a crossover from white to 1/f1/f-noise at a frequency ωξξz\omega_\xi\propto\xi^{-z} with a dynamic exponent z=2z=2.Comment: Revised version to be published in JETP Letter

    The Superconductor-Insulator Transition in a Tunable Dissipative Environment

    Full text link
    We study the influence of a tunable dissipative environment on the dynamics of Josephson junction arrays near the superconductor-insulator transition. The experimental realization of the environment is a two dimensional electron gas coupled capacitively to the array. This setup allows for the well-controlled tuning of the dissipation by changing the resistance of the two dimensional electron gas. The capacitive coupling cuts off the dissipation at low frequencies. We determine the phase diagram and calculate the temperature and dissipation dependence of the array conductivity. We find good agreement with recent experimental results.Comment: 4 pages, 4 .eps figures, revte

    On the Coexistence of Diagonal and off-Diagonal Long-Range Order, a Monte Carlo Study

    Full text link
    The zero temperature properties of interacting 2 dimensional lattice bosons are investigated. We present Monte Carlo data for soft-core bosons that demonstrate the existence of a phase in which crystalline long-range order and off-diagonal long-range order (superfluidity) coexist. We comment on the difference between hard and soft-core bosons and compare our data to mean-field results that predict a larger coexistence region. Furthermore, we determine the critical exponents for the various phase transitions.Comment: 7 pages and 8 figures appended in postscript, KA-TFP-93-0
    corecore