30 research outputs found

    Whole animal copper flux assessed by positron emission tomography in the Long - Evans cinnamon rat - a feasibility study

    Get PDF
    Copper is an essential trace element. However, excess copper can lead to oxidation of biomolecules and cell damage and copper levels must be carefully controlled. While copper homeostasis has been studied extensively at the cellular level, short-term body copper fluxes are poorly understood. Here, we assessed for the first time the feasibility of measuring whole body copper flux by positron emission tomography, using 64Cu. A comparative approach comparing the Long - Evans cinnamon (LEC) rat to the wild type was chosen. LEC rats are an accepted model for Wilson disease, an inherited disorder of copper excretion in humans. In LEC rats as well as in Wilson patients, the copper transporting ATPase, ATP7B, is defective. This ATPase is primarily expressed in the liver and serves in copper secretion via the bile. Dysfunction of ATP7B leads to accumulation of copper in the liver. A control and an LEC rat were transgastrically injected with 10 ÎŒg of 64Cu and the copper flux followed for three hours by whole animal PET and concomitant collection of bile, as well as the analysis of tissue following tomography. As seen by PET, the administered copper was largely trapped in the stomach and the proximal intestine, and without a significant difference between control and LEC rat. Due to an insufficient dynamic range of the PET technology, copper which was systemically absorbed and primarily transported to the liver could only be followed by sampling and by ÎČ-counting. Biliary copper excretion ensued after 15 min in the control rat, but was absent in the LEC rat. Biliary excretion reached saturation one hour after copper administration. The trapping of orally administered copper in the gastrointestinal tract may be an important mechanism to prevent copper toxicity under conditions of a sudden, excessive copper load, which cannot be alleviated by increased biliary secretion. This trapping does however limit the utility of PET to measure whole animal copper flu

    Herpes simplex virus hepatitis 4 years after liver transplantation

    Get PDF
    If not promptly recognized and treated, herpes simplex virus (HSV) hepatitis is associated with a high mortality. A patient transplanted for primary sclerosing cholangitis required, 4 years later, a colectomy for a steroid-resistant flare of ulcerative colitis. He subsequently developed fever, with genital and oral ulcerations. He was hospitalized for diabetic decompensation with massive elevation of serum aminotransferases. Examination revealed vesicles on the hands. Liver biopsy showed Cowdry type B inclusions. Therapy with acyclovir was immediately initiated and the patient recovered. This case illustrates the diagnostic importance of mucocutaneous lesions in the assessment of complications after liver transplantatio

    KDR Identifies a Conserved Human and Murine Hepatic Progenitor and Instructs Early Liver Development

    Get PDF
    SummaryUnderstanding the fetal hepatic niche is essential for optimizing the generation of functional hepatocyte-like cells (hepatic cells) from human embryonic stem cells (hESCs). Here, we show that KDR (VEGFR2/FLK-1), previously assumed to be mostly restricted to mesodermal lineages, marks a hESC-derived hepatic progenitor. hESC-derived endoderm cells do not express KDR but, when cultured in media supporting hepatic differentiation, generate KDR+ hepatic progenitors and KDR− hepatic cells. KDR+ progenitors require active KDR signaling both to instruct their own differentiation into hepatic cells and to non-cell-autonomously support the functional maturation of cocultured KDR− hepatic cells. Analysis of human fetal livers suggests that similar progenitors are present in human livers. Lineage tracing in mice provides in vivo evidence of a KDR+ hepatic progenitor for fetal hepatoblasts, adult hepatocytes, and adult cholangiocytes. Altogether, our findings reveal that KDR is a conserved marker for endoderm-derived hepatic progenitors and a functional receptor instructing early liver development

    Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease

    Get PDF
    Germline manipulation using CRISPR/Cas9 genome editing has dramatically accelerated the generation of new mouse models. Nonetheless, many metabolic disease models still depend upon laborious germline targeting, and are further complicated by the need to avoid developmental phenotypes. We sought to address these experimental limitations by generating somatic mutations in the adult liver using CRISPR/Cas9, as a new strategy to model metabolic disorders. As proof-of-principle, we targeted the low-density lipoprotein receptor (Ldlr), which when deleted, leads to severe hypercholesterolemia and atherosclerosis. Here we show that hepatic disruption of Ldlr with AAV-CRISPR results in severe hypercholesterolemia and atherosclerosis. We further demonstrate that co-disruption of Apob, whose germline loss is embryonically lethal, completely prevented disease through compensatory inhibition of hepatic LDL production. This new concept of metabolic disease modeling by somatic genome editing could be applied to many other systemic as well as liver-restricted disorders which are difficult to study by germline manipulation

    Innovations, challenges, and minimal information for standardization of humanized mice.

    Get PDF
    Mice xenotransplanted with human cells and/or expressing human gene products (also known as "humanized mice") recapitulate the human evolutionary specialization and diversity of genotypic and phenotypic traits. These models can provide a relevant in vivo context for understanding of human-specific physiology and pathologies. Humanized mice have advanced toward mainstream preclinical models and are now at the forefront of biomedical research. Here, we considered innovations and challenges regarding the reconstitution of human immunity and human tissues, modeling of human infections and cancer, and the use of humanized mice for testing drugs or regenerative therapy products. As the number of publications exploring different facets of humanized mouse models has steadily increased in past years, it is becoming evident that standardized reporting is needed in the field. Therefore, an international community-driven resource called "Minimal Information for Standardization of Humanized Mice" (MISHUM) has been created for the purpose of enhancing rigor and reproducibility of studies in the field. Within MISHUM, we propose comprehensive guidelines for reporting critical information generated using humanized mice

    Small animal models for human immunodeficiency virus (HIV), hepatitis b, and tuberculosis: Proceedings of an NIAID workshop

    Get PDF
    The main advantage of animal models of infectious diseases over in vitro studies is the gain in the understanding of the complex dynamics between the immune system and the pathogen. While small animal models have practical advantages over large animal models, it is crucial to be aware of their limitations. Although the small animal model at least needs to be susceptible to the pathogen under study to obtain meaningful data, key elements of pathogenesis should also be reflected when compared to humans. Well-designed small animal models for HIV, hepatitis viruses and tuberculosis require, additionally, a thorough understanding of the similarities and differences in the immune responses between humans and small animals and should incorporate that knowledge into the goals of the study. To discuss these considerations, the NIAID hosted a workshop on ‘Small Animal Models for HIV, Hepatitis B, and Tuberculosis’ on May 30, 2019. Highlights of the workshop are outlined below
    corecore