53 research outputs found

    Nonlinear wakefields and electron injection in cluster plasma

    Full text link
    Laser and beam driven wakefields promise orders of magnitude increases in electric field gradients for particle accelerators for future applications. Key areas to explore include the emittance properties of the generated beams and overcoming the dephasing limit in the plasma. In this paper, the first in-depth study of the self-injection mechanism into wakefield structures from non-homogeneous cluster plasmas is provided using high-resolution two dimensional particle-in-cell simulations. The clusters which are typical structures caused by ejection of gases from a high-pressure gas jet have a diameter much smaller than the laser wavelength. Conclusive evidence is provided for the underlying mechanism that leads to particle trapping, comparing uniform and cluster plasma cases. The accelerated electron beam properties are found to be tunable by changing the cluster parameters. The mechanism explains enhanced beam charge paired with large transverse momentum and energy which has implications for the betatron x-ray flux. Finally, the impact of clusters on the high-power laser propagation behavior is discussed

    Generation of GeV protons from 1 PW laser interaction with near critical density targets

    Full text link
    The propagation of ultra intense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two-dimensional Particle-in-Cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.Comment: 26 pages, 8 figure

    Laser-ion acceleration through controlled surface contamination

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98750/1/PhysPlasmas_18_040702.pd

    X-ray phase contrast imaging of biological specimens with tabletop synchrotron radiation

    Get PDF
    Since their discovery in 1896, x-rays have had a profound impact on science, medicine and technology. Here we show that the x-rays from a novel tabletop source of bright coherent synchrotron radiation can be applied to phase contrast imaging of biological specimens, yielding superior image quality and avoiding the need for scarce or expensive conventional sources

    Accelerating Protons to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses

    Full text link
    Proton acceleration by high-intensity laser pulses from ultra-thin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10-11 achieved on Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-In-Cell (PIC) computer simulations of proton acceleration in the Directed Coulomb explosion regime from ultra-thin double-layer (heavy ions / light ions) foils of different thicknesses were performed under the anticipated experimental conditions for Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 microns (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. 2D PIC simulations show that a 150-500 TW laser pulse is able to accelerate protons up to 100-220 MeV energies.Comment: 26 pages, 6 figure

    Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz

    Get PDF
    International audienceWe investigate the production of electron beams from the interaction of relativistically-intense laser pulses with a solid-density SiO2 target in a regime where the laser pulse energy is -mJ and the repetition rate -kHz. The electron beam spatial distribution and spectrum were investigated as a function of the plasma scale length, which was varied by deliberately introducing a moderate-intensity prepulse. At the optimum scale length of λ/2, the electrons are emitted in a collimated beam having a quasimonoenergetic distribution that peaked at -0.8MeV. A highly reproducible structure in the spatial distribution exhibits an evacuation of electrons along the laser specular direction and suggests that the electron beam duration is comparable to that of the laser pulse. Particle-in-cell simulations which are in good agreement with the experimental results offer insights on the acceleration mechanism by the laser field. © 2009 The American Physical Society

    Electron acceleration using laser produced plasmas

    No full text
    Low density plasmas have long been of interest as a potential medium for particle acceleration since relativistic plasma waves are capable of supporting electric fields greater than 100 GeV/m. The physics of particle acceleration using plasmas will be reviewed, and new results will be discussed which have demonstrated that relatively narrow energy spread (<3%) beams having energies greater than 100 MeV can be produced from femtosecond laser plasma interactions. Future experiments and potential applications will also be discussed
    • …
    corecore