7,343 research outputs found

    Control of MTDC Transmission Systems under Local Information

    Full text link
    High-voltage direct current (HVDC) is a commonly used technology for long-distance electric power transmission, mainly due to its low resistive losses. In this paper a distributed controller for multi-terminal high-voltage direct current (MTDC) transmission systems is considered. Sufficient conditions for when the proposed controller renders the closed-loop system asymptotically stable are provided. Provided that the closed loop system is asymptotically stable, it is shown that in steady-state a weighted average of the deviations from the nominal voltages is zero. Furthermore, a quadratic cost of the current injections is minimized asymptotically

    Distributed PI-Control with Applications to Power Systems Frequency Control

    Full text link
    This paper considers a distributed PI-controller for networked dynamical systems. Sufficient conditions for when the controller is able to stabilize a general linear system and eliminate static control errors are presented. The proposed controller is applied to frequency control of power transmission systems. Sufficient stability criteria are derived, and it is shown that the controller parameters can always be chosen so that the frequencies in the closed loop converge to nominal operational frequency. We show that the load sharing property of the generators is maintained, i.e., the input power of the generators is proportional to a controller parameter. The controller is evaluated by simulation on the IEEE 30 bus test network, where its effectiveness is demonstrated

    Distributed Primary Frequency Control through Multi-Terminal HVDC Transmission Systems

    Full text link
    This paper presents a decentralized controller for sharing primary AC frequency control reserves through a multi-terminal HVDC grid. By using Lyapunov arguments, the proposed controller is shown to stabilize the equilibrium of the closed-loop system consisting of the interconnected AC and HVDC grids, given any positive controller gains. The static control errors resulting from the proportional controller are quantified and bounded by analyzing the equilibrium of the closed-loop system. The proposed controller is applied to a test grid consisting of three asynchronous AC areas interconnected by an HVDC grid, and its effectiveness is validated through simulation
    • …
    corecore