73 research outputs found

    Mutational analysis of fructose-1,6-bisphosphate aldolase of Neisseria meningitidis serogroup B

    Get PDF
    Fructose-1,6-bisphosphate aldolase (FBA) is a classical cytoplasmic glycolytic enzyme which, despite lacking a predicted signal peptide, has been demonstrated to be expressed and transported to the surface of numerous Gram-positive bacteria and shown to interact with host molecules and perform non-glycolytic biological functions. Genome-based studies have also demonstrated that the glycolytic pathway appears to be non-functional in the meningococcus due to absence of phosphofructokinase, one of the important enzymes in this pathway. This study aimed to investigate whether the FBA, a so-called housekeeping enzyme, is required for maximal in vitro growth of N. meningitidis. An FBA knock-out mutant was created in N. meningitidis using an inverse polymerase chain reaction (PCR) and allelic exchange methodology. Phenotypic analysis of FBA-deficient mutant strains such as growth profiling experiments showed that the FBA-deficient mutant grew at the same rate (in broth culture and on solid media) as the wild-type strain, suggesting that FBA is not required for optimal growth of N. meningitidis under the in vitro conditions tested. No differences in either colony or bacterial cell morphology (using light microscopy) were observed. In summary, despite being a central enzyme in the glycolytic cycle, FBA is not required for in vitro growth of N. meningitidis.Key words: Neisseria meningitidis, aldolase, mutagenesis, growth kinetics, glycolytic cycle

    Uptake of Neisserial autotransporter lipoprotein (NalP) promotes an increase in human brain microvascular endothelial cell metabolic activity

    Get PDF
    Neisseria meningitidis is normally a human nasopharyngeal commensal but is also capable of causing lifethreatening sepsis and meningitis. N. meningitidis secretes several virulence-associated proteins including Neisserial autotransporter lipoprotein (NalP), an immunogenic, type Va autotransporter harboring an S8-family serine endopeptidase domain. NalP has been previously characterized as a cell-surface maturation protease which processes other virulence-associated meningococcal surface proteins, and as a factor contributing to the survival of meningococci in human serum due to its ability to cleave complement factor C3. Here, recombinant NalP (rNalP) fragments were purified and used to investigate the interaction of NalP with host cells. Flow cytometry and confocal microscopy demonstrated binding and uptake of rNalP into different human cell types. High-resolution microscopy confirmed that internalized rNalP predominantly localized to the perinuclear region of cells. Abolition of rNalP protease activity using site-directed mutagenesis did not influence uptake or subcellular localization, but inactive rNalP (rNalPS426A) was unable to induce an increase in human brain microvascular endothelial cell metabolic activity provoked by proteolytically-active rNalP. Our data suggests a more complex and multifaceted role for NalP in meningococcal pathogenesis than was previously understood which includes novel intra-host cell functions

    The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells

    Get PDF
    BackgroundGlyceraldehyde 3-phosphate dehydrogenases (GAPDHs) are cytoplasmic glycolytic enzymes, which although lacking identifiable secretion signals, have also been found localized to the surface of several bacteria (and some eukaryotic organisms); where in some cases they have been shown to contribute to the colonization and invasion of host tissues. Neisseria meningitidis is an obligate human nasopharyngeal commensal which can cause life-threatening infections including septicaemia and meningitis. N. meningitidis has two genes, gapA-1 and gapA-2, encoding GAPDH enzymes. GapA-1 has previously been shown to be up-regulated on bacterial contact with host epithelial cells and is accessible to antibodies on the surface of capsule-permeabilized meningococcal cells. The aims of this study were: 1) to determine whether GapA-1 was expressed across different strains of N. meningitidis; 2) to determine whether GapA-1 surface accessibility to antibodies was dependant on the presence of capsule; 3) to determine whether GapA-1 can influence the interaction of meningococci and host cells, particularly in the key stages of adhesion and invasion.ResultsIn this study, expression of GapA-1 was shown to be well conserved across diverse isolates of Neisseria species. Flow cytometry confirmed that GapA-1 could be detected on the cell surface, but only in a siaD-knockout (capsule-deficient) background, suggesting that GapA-1 is inaccessible to antibody in in vitro-grown encapsulated meningococci. The role of GapA-1 in meningococcal pathogenesis was addressed by mutational analysis and functional complementation. Loss of GapA-1 did not affect the growth of the bacterium in vitro. However, a GapA-1 deficient mutant showed a significant reduction in adhesion to human epithelial and endothelial cells compared to the wild-type and complemented mutant. A similar reduction in adhesion levels was also apparent between a siaD-deficient meningococcal strain and an isogenic siaD gapA-1 double mutant.ConclusionsOur data demonstrates that meningococcal GapA-1 is a constitutively-expressed, highly-conserved surface-exposed protein which is antibody-accessible only in the absence of capsule. Mutation of GapA-1 does not affect the in vitro growth rate of N. meningitidis, but significantly affects the ability of the organism to adhere to human epithelial and endothelial cells in a capsule-independent process suggesting a role in the pathogenesis of meningococcal infection

    Fructose-1,6-bisphosphate aldolase of Neisseria meningitidis binds human plasminogen via its C-terminal lysine residue

    Get PDF
    Neisseria meningitidis is a leading cause of fatal sepsis and meningitis worldwide. As for commensal species of human neisseriae, N. meningitidis inhabits the human nasopharynx and asymptomatic colonization is ubiquitous. Only rarely does the organism invade and survive in the bloodstream leading to disease. Moonlighting proteins perform two or more autonomous, often dissimilar, functions using a single polypeptide chain. They have been increasingly reported on the surface of both prokaryotic and eukaryotic organisms and shown to interact with a variety of host ligands. In some organisms moonlighting proteins perform virulence-related functions, and they may play a role in the pathogenesis of N. meningitidis. Fructose-1,6- bisphosphate aldolase (FBA) was previously shown to be surface-exposed in meningococci and involved in adhesion to host cells. In this study, FBA was shown to be present on the surface of both pathogenic and commensal neisseriae, and surface localization and anchoring was demonstrated to be independent of aldolase activity. Importantly, meningococcal FBA was found to bind to human glu- plasminogen in a dose-dependent manner. Site-directed mutagenesis demonstrated that the C-terminal lysine residue of FBA was required for this interaction, whereas # subterminal lysine residues were not involved

    Fructose-1,6-bisphosphate aldolase of Neisseria meningitidis binds human plasminogen via its C-terminal lysine residue

    Get PDF
    Neisseria meningitidis is a leading cause of fatal sepsis and meningitis worldwide. As for commensal species of human neisseriae, N. meningitidis inhabits the human nasopharynx and asymptomatic colonization is ubiquitous. Only rarely does the organism invade and survive in the bloodstream leading to disease. Moonlighting proteins perform two or more autonomous, often dissimilar, functions using a single polypeptide chain. They have been increasingly reported on the surface of both prokaryotic and eukaryotic organisms and shown to interact with a variety of host ligands. In some organisms moonlighting proteins perform virulence-related functions, and they may play a role in the pathogenesis of N. meningitidis. Fructose-1,6- bisphosphate aldolase (FBA) was previously shown to be surface-exposed in meningococci and involved in adhesion to host cells. In this study, FBA was shown to be present on the surface of both pathogenic and commensal neisseriae, and surface localization and anchoring was demonstrated to be independent of aldolase activity. Importantly, meningococcal FBA was found to bind to human glu- plasminogen in a dose-dependent manner. Site-directed mutagenesis demonstrated that the C-terminal lysine residue of FBA was required for this interaction, whereas # subterminal lysine residues were not involved

    Variant signal peptides of vaccine antigen, FHbp, impair processing affecting surface localization and antibody-mediated killing in most meningococcal isolates

    Get PDF
    © Copyright © 2019 da Silva, Karlyshev, Oldfield, Wooldridge, Bayliss, Ryan and Griffin. Meningococcal lipoprotein, Factor H binding protein (FHbp), is the sole antigen of the Trumenba vaccine (Pfizer) and one of four antigens of the Bexsero vaccine (GSK) targeting Neisseria meningitidis serogroup B isolates. Lipidation of FHbp is assumed to occur for all isolates. We show in the majority of a collection of United Kingdom isolates (1742/1895) non-synonymous single nucleotide polymorphisms (SNPs) in the signal peptide (SP) of FHbp. A single SNP, common to all, alters a polar amino acid that abolishes processing: lipidation and SP cleavage. Whilst some of the FHbp precursor is retained in the cytoplasm due to reduced binding to SecA, remarkably some is translocated and further surface-localized by Slam. Thus we show Slam is not lipoprotein-specific. In a panel of isolates tested, the overall reduced surface localization of the precursor FHbp, compared to isolates with an intact SP, corresponded with decreased susceptibility to antibody-mediated killing. Our findings shed new light on the canonical pathway for lipoprotein processing and translocation of important relevance for lipoprotein-based vaccines in development and in particular for Trumenba

    A role for fibroblast growth factor receptor 1 in the pathogenesis of Neisseria meningitidis

    Get PDF
    Neisseria meningitidis (the meningococcus) remains an important cause of human disease, including meningitis and sepsis. Adaptation to the host environment includes many interactions with specific cell surface receptors, resulting in intracellular signalling and cytoskeletal rearrangements that contribute to pathogenesis. Here, we assessed the interactions between meningococci and Fibroblast Growth Factor Receptor 1-IIIc (FGFR1-IIIc): a receptor specific to endothelial cells of the microvasculature, including that of the blood-brain barrier. We show that the meningococcus recruits FGFR1-IIIc onto the surface of human blood microvascular endothelial cells (HBMECs). Furthermore, we demonstrate that expression of FGFR1-IIIc is required for optimal invasion of HBMECs by meningococci. We show that the ability of N. meningitidis to interact with the ligand-binding domain of FGFR1-IIIc is shared with the other pathogenic Neisseria species, N. gonorrhoeae, but not with commensal bacteria including non-pathogenic Neisseria species
    corecore