37 research outputs found

    Origin of anomalous Xe-H in presolar diamonds: Indications of a "cold" r-process

    Full text link
    We report on a concerted effort aimed at understanding the nucleosynthesis origin of Xe-H in presolar nanodiamonds. Previously explored possible explanations have included a secondary neutron-burst process occurring in the He-shell of a type II supernova (SN), as well as a rapid separation, between unstable precursor isobars of a primary r-process, and stable Xe isotopes. Here we present results from the investigation of a rapid neutron-capture scenario in core-collapse SNe with different non-standard r-process variants. Our calculations are performed in the framework of the high-entropy-wind (HEW) scenario using updated nuclear-physics input. We explore the consequences of varying the wind expansion velocity (Vexp) for selected electron fractions (Ye) with their correlated entropy ranges (S), and neutron-freezeout temperatures (T9(freeze)) and timescales (tau-r(freeze). We draw several conclusions: For Xe-H a "cold" r-process with a fast freezeout seems to be the favored scenario. Furthermore, eliminating the low-S range (i.e. the "weak" r-process component) and maintaining a pure "main" or even "strong" r-process leads to an optimum overall agreement with the measured iXe/136Xe abundance ratios. Our results can provide valuable additional insight into overall astrophysical conditions of producing the r-process part of the total SS heavy elements in explosive nucleosynthesis scenarios.Comment: 6 pages, 2 figures XII International Symposium on Nuclei in the Cosmos, August 5-12, 2012, Cairns, Australi

    A high-entropy wind r-process study based on nuclear-structure quantities from the new finite-range droplet model FRDM(2012)

    Full text link
    Theoretical studies of the nucleosynthesis origin of the heavy elements in our Solar System (S.S.) by the rapid neutron-capture process (r-process) still face the entwined uncertainties in the possible astrophysical scenarios and the nuclear-physics properties far from stability. In this paper we present results from the investigation of an r-process in the high-entropy wind (HEW) of core-collapse supernovae (here chosen as one of the possible scenarios for this nucleosynthesis process), using new nuclear-data input calculated in a consistent approach, for masses and ÎČ\beta-decay properties from the new finite-range droplet model FRDM(2012). The accuracy of the new mass model is 0.56 MeV with respect to {\sc AME2003}, to which it was adjusted. We compare the new HEW r-process abundance pattern to the latest S.S. r-process residuals and to our earlier calculations with the nuclear-structure quantities based on FRDM(1992). Substantial overall and specific local improvements in the calculated pattern of the r-process between A≃110A\simeq 110 and 209^{209}Bi, as well as remaining deficiencies are discussed in terms of the underlying spherical and deformed shell structure far from stability.Comment: 8 pages, 4 figure

    Correlations of r-Process Elements in Very Metal-Poor Stars as Clues to their Nucleosynthesis Sites

    Full text link
    Various nucleosynthesis studies have pointed out that the r-process elements in very metal-poor (VMP) halo stars might have different origins. By means of familiar concepts from statistics (correlations, cluster analysis, rank tests of elemental abundances), we look for causally correlated elemental abundance patterns and attempt to link them to astrophysical events. Some of these events produce the r-process elements jointly with iron, while others do not have any significant iron contribution. In the early stage of our Galaxy, at least three r-process nucleosynthesis sites have been active. The first two produce and eject iron and the majority of the lighter r-process elements. We assign them to two different types of core-collapse events, not identical to regular core-collapse supernovae (CCSNe), which produce only light trans-Fe elements. The third category is characterized by a strong r-process and responsible for the major fraction of the heavy main r-process elements without a significant co-production of Fe. It does not appear to be connected to CCSNe, in fact the Fe found in the related r-process enriched stars must come from previously occurring CCSNe. The existence of actinide boost stars indicates a further division among strong r-process sites. We assign these two strong r-process sites to neutron star mergers without fast black hole formation and to events where the ejecta are dominated by black hole accretion disk outflows. Indications from the lowest-metallicity stars hint at a connection to massive single stars (collapsars) forming black holes in the early Galaxy.Comment: 40 pages, 25 figures, 10 table

    The End Of Nucleosynthesis: Production Of Lead And Thorium In The Early Galaxy

    Get PDF
    We examine the Pb and Th abundances in 27 metal-poor stars (-3.1 56) enrichment was produced only by the rapid (r-) nucleosynthesis process. New abundances are derived from Hubble Space Telescope/Space Telescope Imaging Spectrograph, Keck/High Resolution Echelle Spectrograph, and Very Large Telescope/UV-Visual Echelle Spectrograph spectra and combined with other measurements from the literature to form a more complete picture of nucleosynthesis of the heaviest elements produced in the r-process. In all cases, the abundance ratios among the rare earth elements and the third r-process peak elements considered (La, Eu, Er, Hf, and Ir) are constant and equivalent to the scaled solar system r-process abundance distribution. We compare the stellar observations with r-process calculations within the classical "waiting-point" approximation. In these computations a superposition of 15 weighted neutron-density components in the range 23 <= log n(n) <= 30 is fit to the r-process abundance peaks to successfully reproduce both the stable solar system isotopic distribution and the stable heavy element abundance pattern between Ba and U in low-metallicity stars. Under these astrophysical conditions, which are typical of the "main" r-process, we find very good agreement between the stellar Pb r-process abundances and those predicted by our model. For stars with anomalously high Th/Eu ratios (the so-called actinide boost), our observations demonstrate that any nucleosynthetic deviations from the main r-process affect-at most-only the elements beyond the third r-process peak, namely Pb, Th, and U. Our theoretical calculations also indicate that possible r-process abundance "losses" by nuclear fission are negligible for isotopes along the r-process path between Pb and the long-lived radioactive isotopes of Th and U.Deutsche Forschungsgemeinschaft KR 806/13-1Helmholtz Gemeinschaft VH-VI-061U S National Science Foundation AST 07-07447, AST 06-07708Astronom

    Heating in the Accreted Neutron Star Ocean: Implications for Superburst Ignition

    Get PDF
    We perform a self-consistent calculation of the thermal structure in the crust of a superbursting neutron star. In particular, we follow the nucleosynthetic evolution of an accreted fluid element from its deposition into the atmosphere down to a depth where the electron Fermi energy is 20 MeV. We include temperature-dependent continuum electron capture rates and realistic sources of heat loss by thermal neutrino emission from the crust and core. We show that, in contrast to previous calculations, electron captures to excited states and subsequent gamma-emission significantly reduce the local heat loss due to weak-interaction neutrinos. Depending on the initial composition these reactions release up to a factor of 10 times more heat at densities < 10^{11} g/cc than obtained previously. This heating reduces the ignition depth of superbursts. In particular, it reduces the discrepancy noted by Cumming et al. between the temperatures needed for unstable 12C ignition on timescales consistent with observations and the reduction in crust temperature from Cooper pair neutrino emission.Comment: 10 pages, 11 figures, the Astrophysical Journal, in press (scheduled for v. 662). Revised from v1 in response to referee's comment

    Tuning the Clock: Uranium and Thorium Chronometers Applied to CS 31082-001

    Get PDF
    We obtain age estimates for the progenitor(s) of the extremely metal-poor ([Fe/H = -2.9) halo star CS 31082-001, based on the recently reported first observation of a Uranium abundance in this (or any other) star. Age estimates are derived by application of the classical r-process model with updated nuclear physics inputs. The [U/Th] ratio yields an age of 13+-4 Gyr or 8+-4 Gyr, based on the use of the ETFSI-Q or the new HFBCS-1 nuclear mass models, respectively. Implications for Thorium chronometers are discussed.Comment: 5 pages incl. 1 figure, a shorter 3 page version will be published in the proceedings of the "Astrophysical Ages and Timescales" conference held in Hilo, Hawaii, Feb 5-9, 200

    Production of solar abundances for nuclei beyond Sr: The s- and r-process perspectives

    Get PDF
    We present the status of nucleosynthesis beyond Sr, using up-to-date nuclear inputs for both the slow (s-process) and rapid (r-process) scenarios of neutron captures. It is now widely accepted that at least a crucial part of the r-process distribution is linked to neutron star merger (NSM) events. However, so far, we have found only a single direct observation of such a link, the kilonova GW170817. Its fast evolution could not provide strict constraints on the nucleosynthesis details, and in any case, there remain uncertainties in the local r-process abundance patterns, which are independent of the specific astrophysical site, being rooted in nuclear physics. We, therefore, estimate the contributions from the r-process to solar system (S.S.) abundances by adopting the largely site-independent waiting-point concept through a superposition of neutron density components normalized to the r-abundance peaks. Nuclear physics inputs for such calculations are understood only for the trans-Fe nuclei; hence, we restrict our computations to the Sr–Pr region. We then estimate the s-process contributions to that atomic mass range from recent models of asymptotic giant branch stars, for which uncertainties are known to be dominated by nuclear effects. The outcomes from the two independent approaches are then critically analyzed. Despite the remaining problems from both sides, they reveal a surprisingly good agreement, with limited local discrepancies. These few cases are then discussed. New measurements in ionized plasmas are suggested as a source of improvement, with emphasis on ÎČ-decays from unstable Cs isotopes. For heavier nuclei, difficulties grow as r-process progenitors lie far off experimental reach and poorly known branchings affect s-processing. This primarily concerns nuclei that are significantly long-lived in the laboratory and have uncertain decay rates in stars, e.g., Lu176 and Re187. New measurements are urgently needed for them, too

    The Chemical Composition and Age of the Metal-Poor Halo Star BD +17^\circ 3248

    Full text link
    We have combined new high-resolution spectra obtained with the Hubble Space Telescope (HST) and ground-based facilities to make a comprehensive new abundance analysis of the metal-poor, halo star BD +17^\circ 3248. We have detected the third r-process peak elements osmium, platinum, and (for the first time in a metal-poor star) gold, elements whose abundances can only be reliably determined using HST. Our observations illustrate a pattern seen in other similar halo stars with the abundances of the heavier neutron-capture elements, including the third r-process peak elements, consistent with a scaled solar system r-process distribution. The abundances of the lighter neutron-capture elements, including germanium and silver, fall below that same scaled solar r-process curve, a result similar to that seen in the ultra-metal-poor star CS 22892--052. A single site with two regimes or sets of conditions, or perhaps two different sites for the lighter and heavier neutron-capture elements, might explain the abundance pattern seen in this star. In addition we have derived a reliable abundance for the radioactive element thorium. We tentatively identify U II at 3859 A in the spectrum of BD +17^\circ 3248, which makes this the second detection of uranium in a very metal-poor halo star. Our combined observations cover the widest range in proton number (from germanium to uranium) thus far of neutron-capture elements in metal-poor Galactic halo stars. Employing the thorium and uranium abundances in comparison with each other and with several stable elements, we determine an average cosmochronological age for BD +17^\circ 3248 of 13.8 +/- 4 Gyr, consistent with that found for other similar metal-poor halo stars.Comment: 58 pages, 4 tables, 11 figures; To appear in ApJ Typo correcte
    corecore