2,849 research outputs found

    Super- and subradiant emission of two-level systems in the near-Dicke limit

    Full text link
    We analyze the stability of super- and subradiant states in a system of identical two-level atoms in the near-Dicke limit, i.e., when the atoms are very close to each other compared to the wavelength of resonant light. The dynamics of the system are studied using a renormalized master equation, both with multipolar and minimal-coupling interaction schemes. We show that both models lead to the same result and, in contrast to unrenormalized models, predict that the relative orientation of the (co-aligned) dipoles is unimportant in the Dicke limit. Our master equation is of relevance to any system of dipole-coupled two-level atoms, and gives bounds on the strength of the dipole-dipole interaction for closely spaced atoms. Exact calculations for small atom systems in the near-Dicke limit show the increased emission times resulting from the evolution generated by the strong dipole-dipole interaction. However, for large numbers of atoms in the near-Dicke limit, it is shown that as the number of atoms increases, the effect of the dipole-dipole interaction on collective emission is reduced.Comment: 14 pages, 6 figures, published versio

    Creation of Skyrmions in a Spinor Bose-Einstein Condensate

    Full text link
    We propose a scheme for the creation of skyrmions (coreless vortices) in a Bose-Einstein condensate with hyperfine spin F=1. In this scheme, four traveling-wave laser beams, with Gaussian or Laguerre-Gaussian transverse profiles, induce Raman transitions with an anomalous dependence on the laser polarization, thereby generating the optical potential required for producing skyrmions.Comment: 5 pages, 2 figures, RevTe

    Lyman alpha emitting galaxies at 0.2 < z < 0.35 from GALEX spectroscopy

    Full text link
    The GALEX (Galaxy Evolution Explorer) spectroscopic survey mode, with a resolution of about 8 A in the FUV (1350 - 1750 A) and about 20 A in the NUV (1950 - 2750 A) is used for a systematic search of Ly-a emitting galaxies at low redshift. This aims at filling a gap between high-redshift surveys and a small set of objects studied in detail in the nearby universe. A blind search of 7018 spectra extracted in 5 deep exposures (5.65 sq.deg) has resulted in 96 Ly-a emitting galaxy candidates in the FUV domain, after accounting for broad-line AGNs. The Ly-a EWs (equivalent width) are consistent with stellar population model predictions and show no trends as a function of UV color or UV luminosity, except a possible decrease in the most luminous that may be due to small-number statistics. Their distribution in EW is similar to that at z about 3 but their fraction among star-forming galaxies is smaller. Avoiding uncertain candidates, a sub-sample of 66 objects in the range 0.2 < z < 0.35 has been used to build a Ly-a LF (luminosity function). The incompleteness due to objects with significant Ly-a emission but a UV continuum too low for spectral extraction has been evaluated. A comparison with H-a LF in the same redshift domain is consistent with an average Ly-a/H-a of about 1 in about 15 % of the star-forming galaxies. A comparison with high-redshift Ly-a LFs implies an increase of the Ly-a luminosity density by a factor of about 16 from z about 0.3 to z about 3. By comparison with the factor 5 increase of the UV luminosity density in the same redshift range, this suggests an increase of the average Ly-a escape fraction with redshift.Comment: 18 pages, 9 figures, accepted for publication in Ap

    The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties

    Get PDF
    We have analyzed the bivariate distribution of galaxies as a function of ultraviolet-optical colors and absolute magnitudes in the local universe. The sample consists of galaxies with redshifts and optical photometry from the Sloan Digital Sky Survey (SDSS) main galaxy sample matched with detections in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands in the Medium Imaging Survey being carried out by the Galaxy Evolution Explorer (GALEX) satellite. In the (NUV − r)_(0.1) versus M_(r,0.1) galaxy color-magnitude diagram, the galaxies separate into two well-defined blue and red sequences. The (NUV − r)_(0.1) color distribution at each M_(r,0.1) is not well fit by the sum of two Gaussians due to an excess of galaxies in between the two sequences. The peaks of both sequences become redder with increasing luminosity, with a distinct blue peak visible up to M_(r,0.1) ~ − 23. The r_(0.1)-band luminosity functions vary systematically with color, with the faint-end slope and characteristic luminosity gradually increasing with color. After correcting for attenuation due to dust, we find that approximately one-quarter of the color variation along the blue sequence is due to dust, with the remainder due to star formation history and metallicity. Finally, we present the distribution of galaxies as a function of specific star formation rate and stellar mass. The specific star formation rates imply that galaxies along the blue sequence progress from low-mass galaxies with star formation rates that increase somewhat with time to more massive galaxies with a more or less constant star formation rate. Above a stellar mass of ~10^(10.5) M_☉, galaxies with low ratios of current to past averaged star formation rate begin to dominate

    The Calibration and Data Products of the Galaxy Evolution Explorer

    Full text link
    We describe the calibration status and data products pertaining to the GR2 and GR3 data releases of the Galaxy Evolution Explorer (GALEX). These releases have identical pipeline calibrations that are significantly improved over the GR1 data release. GALEX continues to survey the sky in the Far Ultraviolet (FUV, ~154 nm) and Near Ultraviolet (NUV, ~232 nm) bands, providing simultaneous imaging with a pair of photon counting, microchannel plate, delay line readout detectors. These 1.25 degree field-of-view detectors are well-suited to ultraviolet observations because of their excellent red rejection and negligible background. A dithered mode of observing and photon list output pose complex requirements on the data processing pipeline, entangling detector calibrations and aspect reconstruction algorithms. Recent improvements have achieved photometric repeatability of 0.05 and 0.03 mAB in the FUV and NUV, respectively. We have detected a long term drift of order 1% FUV and 6% NUV over the mission. Astrometric precision is of order 0.5" RMS in both bands. In this paper we provide the GALEX user with a broad overview of the calibration issues likely to be confronted in the current release. Improvements are likely as the GALEX mission continues into an extended phase with a healthy instrument, no consumables, and increased opportunities for guest investigations.Comment: Accepted to the ApJS (a special GALEX issue

    Ly alpha-emitting galaxies at 0.2 < z < 0.35 from GALEX spectroscopy

    Get PDF
    We have used the GALEX (Galaxy Evolution Explorer) spectroscopic survey mode, with a resolution of similar to 8 angstrom in the far-ultraviolet (FUV; 1350-1750 angstrom) and similar to 20 angstrom in the near-ultraviolet (NUV; 1950-2750 angstrom) for a systematic search of Ly alpha-emitting galaxies at low redshift. Our aim is to fill a gap between high-redshift surveys and a small set of objects studied in detail in the nearby universe. A blind search of 7018 spectra extracted in five deep exposures (5.65 deg(2)) has resulted in 96 Ly alpha-emitting galaxy candidates in the FUV domain after accounting for broad-line AGNs. The Ly alpha equivalent widths (EWs) are consistent with stellar population model predictions and show no trends as a function of UV color or UV luminosity, with the exception of a possible decrease in the most luminous objects that may be due to small-number statistics. The objects' distribution in EW is similar to that at z similar to 3, but their fraction among star-forming galaxies is smaller. Avoiding uncertain candidates, a subsample of 66 objects in the range 0.2 < z < 0.35 has been used to build a Ly alpha luminosity function (LF). The incompleteness due to objects with significant Ly alpha emission but a UV continuum too low for spectral extraction has been evaluated. A comparison with H alpha LFs in the same redshift domain is consistent with an average Ly alpha/H alpha of similar to 1 in about 15% of the star-forming galaxies. A comparison with high-redshift Ly alpha LFs implies an increase of the Ly alpha luminosity density by a factor of about 16 from z similar to 0.3 to z similar to 3. By comparison with the factor of 5 increase in the UV luminosity density in the same redshift range, this suggests an increase of the average Ly alpha escape fraction with redshift

    Nitrogen Production in Starburst Galaxies Detected by GALEX

    Get PDF
    We investigate the production of nitrogen in star-forming galaxies with ultraviolet (UV) radiation detected by the Galaxy Evolution Explorer Satellite (GALEX). We use a sample of 8745 GALEX emission-line galaxies matched to the Sloan Digital Sky Survey (SDSS) spectroscopic sample. We derive both gas-phase oxygen and nitrogen abundances for the sample and apply stellar population synthesis models to derive stellar masses and star formation histories of the galaxies. We compare oxygen abundances derived using three different diagnostics. We derive the specific star formation rates of the galaxies by modeling the seven-band GALEX+SDSS photometry. We find that galaxies that have log (SFR/M_*) ≳ − 10.0 typically have values of log (N/O) ~ 0.05 dex less than galaxies with log (SFR/M_*) ≟ − 10.0 and similar oxygen abundances

    Ultraviolet through Infrared Spectral Energy Distributions from 1000 SDSS Galaxies: Dust Attenuation

    Get PDF
    The meaningful comparison of models of galaxy evolution to observations is critically dependent on the accurate treatment of dust attenuation. To investigate dust absorption and emission in galaxies we have assembled a sample of ~1000 galaxies with ultraviolet (UV) through infrared (IR) photometry from GALEX, SDSS, and Spitzer and optical spectroscopy from SDSS. The ratio of IR to UV emission (IRX) is used to constrain the dust attenuation in galaxies. We use the 4000A break as a robust and useful, although coarse, indicator of star formation history (SFH). We examine the relationship between IRX and the UV spectral slope (a common attenuation indicator at high-redshift) and find little dependence of the scatter on 4000A break strength. We construct average UV through far-IR spectral energy distributions (SEDs) for different ranges of IRX, 4000A break strength, and stellar mass (M_*) to show the variation of the entire SED with these parameters. When binned simultaneously by IRX, 4000A break strength, and M_* these SEDs allow us to determine a low resolution average attenuation curve for different ranges of M_*. The attenuation curves thus derived are consistent with a lambda^{-0.7} attenuation law, and we find no significant variations with M_*. Finally, we show the relationship between IRX and the global stellar mass surface density and gas-phase-metallicity. Among star forming galaxies we find a strong correlation between IRX and stellar mass surface density, even at constant metallicity, a result that is closely linked to the well-known correlation between IRX and star-formation rate.Comment: 12 pages, 8 figures, 2 tables, appearing in the Dec 2007 GALEX special issue of ApJ Supp (29 papers
    • 

    corecore