637 research outputs found

    Modeling of high speed friction stir spot welding using a lagrangian finite element approach

    Get PDF
    Friction stir spot welding (FSSW) has been shown to be capable of joining steels of very high strength, while also being very flexible in terms of controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding (RSW) if tool life is sufficiently high, and if machine spindle loads are sufficiently low so that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work tool speeds of 3000 rpm and higher were employed, in order to generate heat more quickly and to reduce welding loads to acceptable levels. The FSSW process was modeled using a finite element approach with the ForgeÂź software package. An updated Lagrangian scheme with explicit time integration was employed to model the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate [3]. The modeling approach can be described as two-dimensional, axisymmetric, but with an aspect of three dimensions in terms of thermal boundary conditions. Material flow was calculated from a velocity field which was two dimensional, but heat generated by friction was computed using a virtual rotational velocity component from the tool surface. An isotropic, viscoplastic Norton-Hoff law was used to model the evolution of material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures and the movement of the joint interface with reasonable accuracy for the welding of a dual phase 980 steel

    Rising Precipitation Extremes across Nepal

    No full text
    As a mountainous country, Nepal is most susceptible to precipitation extremes and related hazards, including severe floods, landslides and droughts that cause huge losses of life and property, impact the Himalayan environment, and hinder the socioeconomic development of the country. Given that the countrywide assessment of such extremes is still lacking, we present a comprehensive picture of prevailing precipitation extremes observed across Nepal. First, we present the spatial distribution of daily extreme precipitation indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI) from 210 stations over the period of 1981–2010. Then, we analyze the temporal changes in the computed extremes from 76 stations, featuring long-term continuous records for the period of 1970–2012, by applying a non-parametric Mann−Kendall test to identify the existence of a trend and Sen’s slope method to calculate the true magnitude of this trend. Further, the local trends in precipitation extremes have been tested for their field significance over the distinct physio-geographical regions of Nepal, such as the lowlands, middle mountains and hills and high mountains in the west (WL, WM and WH, respectively), and likewise, in central (CL, CM and CH) and eastern (EL, EM and EH) Nepal. Our results suggest that the spatial patterns of high-intensity precipitation extremes are quite different to that of annual or monsoonal precipitation. Lowlands (Terai and Siwaliks) that feature relatively low precipitation and less wet days (rainy days) are exposed to high-intensity precipitation extremes. Our trend analysis suggests that the pre-monsoonal precipitation is significantly increasing over the lowlands and CH, while monsoonal precipitation is increasing in WM and CH and decreasing in CM, CL and EL. On the other hand, post-monsoonal precipitation is significantly decreasing across all of Nepal while winter precipitation is decreasing only over the WM region. Both high-intensity precipitation extremes and annual precipitation trends feature east−west contrast, suggesting significant increase over the WM and CH region but decrease over the EM and CM regions. Further, a significant positive trend in the number of consecutive dry days but significant negative trend in the number of wet (rainy) days are observed over the whole of Nepal, implying the prolongation of the dry spell across the country. Overall, the intensification of different precipitation indices over distinct parts of the country indicates region-specific risks of floods, landslides and droughts. The presented findings, in combination with population and environmental pressures, can support in devising the adequate region-specific adaptation strategies for different sectors and in improving the livelihood of the rural communities in Nepal

    Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    Get PDF
    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (â‰Č1  Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics for memory processing and learning

    Rising mean and extreme near-surface air temperature across Nepal

    No full text
    Owing to unique topographic and ecological diversity, central Himalayan state of Nepal is exposed to adverse impacts of climate change and associated disasters. However, countrywide historical assessment of mean and extreme temperature changes, a prerequisite for devising adequate adaptation strategies, is still lacking. Here, we present a comprehensive picture of mean and extreme temperature trends across Nepal over the 1980–2016 period, based on high-quality daily temperature observations from 46 stations. Our results suggest that besides winter cooling in southern lowlands, the country features a widespread warming, which is higher for maximum temperature (~0.04°C⋅year−1) than for minimum temperature (~0.02°C⋅year−1), over the mountainous region than in valleys and lowlands and during the pre-monsoon season than for the rest of the year. Consistently, we found a higher increasing trend for warm days (13 days⋅decade−1) than for warm nights (4 days⋅decade−1), whereas the rates of decrease for cold days and cold nights are the same (6 days⋅decade−1). Further investigations reveal that pronounced warming in maximum temperature over mountain regions can be attributed to less cloud cover and snowfall in recent decades during non-monsoon seasons as a result of positive geopotential height anomalies and strengthening of anticyclonic circulations in the mid-to-upper troposphere. Similarly, increased stability of lower atmosphere during winter and post-monsoon seasons caused prolonged and frequent periods of fog over lowlands, resulting in significant winter cooling there. © 2019 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society

    Simulation of Growth and Yield of Rainfed Maize Under Varied Agronomic Management and Changing Climatic Scenario in Nawalparasi, Nepal

    Full text link
    Correction: Figure 3 was corrupted and so the PDF was replaced on 29th December 2016 with the corrected Figure 3.A field experiment and simulation modeling study in combination for different maize cultivars planted at different sowing dates were accomplished at Kawasoti-5, Nawalparasi during spring season of 2013 to assess the impact of climate change scenario as predicted by IPCC in rainfed spring maize by using CSM-CERES-Maize model. Result showed that RML-4/RML-17 produced higher kernel rows/ ear (13.77), kernel per row (30.42) and test weight (244.9 g). Significantly higher grain yield was also found for RML-4/RML-17 (6.03 t/ha) compared to Poshilo makai-1 (4.73 t/ha), Arun-2 (3.55 t/ha) and Local (2.92 t/ha). Earlier sowing date (7th April) actually produced higher kernel/row (27.97), kernel rows/ear (12.89) and 1000 grain weight (230 g). Significantly higher grain yield (5.13t/ha) was obtained in earlier sowing date (7th April). The CSM-CERES-Maize model was calibrated and found well validated with days to anthesis (RMSE= 0.426 day and D-index= 0.998), days to physiological maturity (RMSE=0.674 day and D-index= 0.999), number of grain/m2 at maturity (RMSE= 85.287 grain /m2 and D-index= 0.993), unit weight at maturity (RMSE=0.012 g/kernel and D-index= 0.854) and grain yield (RMSE=54.94 kg/ha and D-index= 1.00). The model was found sensitive to climate change parameters. The sensitivity for various climate change parameter indicated that there was severely decreased trend in simulated rainfed spring maize yield with the increment of maximum and minimum temperature, decrease in solar radiation and decrease carbondioxide concentration. Even 2°C rise in temperature can decrease around 15-20% yield of spring maize and this negative effect was even more pronounced in hybrid than other cultivars.Journal of Maize Research and Development (2015) 1(1):123-133DOI: http://dx.doi.org/10.5281/zenodo.3428

    Milling, Nutritional, Physical and Cooking Properties of Four Basmati Rice Varieties

    Full text link
    Rice is one of the most popular staple foods produced contributing higher most in agriculture gross domestic production in Nepal. Thus, nutritional, physicochemical, and cooking properties of rice might interplay important roles in their production and farming practice, therefore, it is inevitable to understand these characteristic features. However, there has been only limited information available on such properties, therefore we aimed to examine nutritional, physicochemical and cooking properties of four Basmati varieties of rice namely Red Basmati, White Basmati, Black Basmati and Pokhareli Basmati. These rice varieties were purchased from different places in Nepal in paddy form. In this study various parameters associated with milling, nutritional, physical and cooking properties were evaluated. To measure protein contents in rice, Kjeldal method was implied. Among the varieties, the protein content was maximum in Red Basmati (7.74%) and minimum in Black Basmati (6.51%). The milled rice percentage and head rice recovery were maximum in Pokhareli Basmati represented by 72.02±0.10 and 67.46±0.42, respectively, while and minimum in White Basmati represented by 68.17±0.50 and 65.11±0.28, respectively. The kernel elongation ratio and volume expansion ratio was maximum in Red Basmati represented by 1.62 and 2.85 respectively. Water uptake ratio was maximum 3.11 in Black Basmati and minimum of 2.18 in Red Basmati. Gruel loss was found lowest 1.05% in Red Basmati and highest represented by 2.40% in Black Basmati. The highest starch iodine blue value of 0.21 was observed in Red Basmati and lowest of 0.12 in Black Basmati. The Red Basmati was found to have the better cooking quality among all varieties

    A single transcription factor is sufficient to induce and maintain secretory cell architecture

    Get PDF
    We hypothesized that basic helix–loop–helix (bHLH) MIST1 (BHLHA15) is a “scaling factor” that universally establishes secretory morphology in cells that perform regulated secretion. Here, we show that targeted deletion of MIST1 caused dismantling of the secretory apparatus of diverse exocrine cells. Parietal cells (PCs), whose function is to pump acid into the stomach, normally lack MIST1 and do not perform regulated secretion. Forced expression of MIST1 in PCs caused them to expand their apical cytoplasm, rearrange mitochondrial/lysosome trafficking, and generate large secretory granules. Mist1 induced a cohort of genes regulated by MIST1 in multiple organs but did not affect PC function. MIST1 bound CATATG/CAGCTG E boxes in the first intron of genes that regulate autophagosome/lysosomal degradation, mitochondrial trafficking, and amino acid metabolism. Similar alterations in cell architecture and gene expression were also caused by ectopically inducing MIST1 in vivo in hepatocytes. Thus, MIST1 is a scaling factor necessary and sufficient by itself to induce and maintain secretory cell architecture. Our results indicate that, whereas mature cell types in each organ may have unique developmental origins, cells performing similar physiological functions throughout the body share similar transcription factor-mediated architectural “blueprints.

    Study on Challenges in Integrating Renewable Technologies

    Get PDF
    ABSTRACT: The process of Evolving the renewable generation technologies has many challenges, such as realize reduction in the capital costs and improving energy efficiencies of the different types of renewable energy systems, such as wind, solar PV, solar thermal, and tidal. Significant evolution is desirable in large-scale energy storage technologies. For consistent integration of renewable resources in a grid, the challenges of high penetration levels will have to be addressed in power system planning and operation, and in grid connection. The aspirants of power and energy engineering careers need to be educated so that they can foresee and evolve new approaches and technologies to maintain reliability and economy of grids intact. The challenges of integrating high penetrations of renewable energy technologies into the grid are seldom taken up as they need interdisciplinary innovations in areas as power systems analysis, communications, power electronics, economics, operations research, and industrial organization. In this paper some of the challenges in Integrating Renewable Technologies are discussed

    Degree of Milling Effect on Cold Water Rice Quality

    Full text link
    The aim of this study was to examine the effects of degree of milling on various rice parameters such as proximate composition, and cooking properties using mathematical model. The experiments were performed in the laboratory of Food Research Division, Nepal Agricultural Research Council. The three different medium type rice varieties of Nepal (Lumle-2, Chhomrong and Machhapuchre-3) were exposed to five different degrees of milling (0%, 6%, 8%, 10% and 12%). The degree of milling (DM) level significantly (P≀0.05) affected the milling recovery; head rice yield, nutrient content as well as cooking properties of the rice. Increase in DM resulted in further reduction of protein content, fat content, minerals, milled rice and head rice yield after bran layer was further removed. A positive correlation between DM used in present model, amylose content, kernel elongation and gruel solid loss was observed, however, with an increase in DM; amylose content, kernel elongation and gruel solid loss were found to be increased. Adopting 6 to 8% DM for commercial milling of rice might help to prevent quantitative, qualitative and nutritional loss along with retention of good cooking characteristics
    • 

    corecore