117 research outputs found

    Ab initio study of the elastic behavior of MgSiO3 ilmenite at high pressure

    Get PDF
    We investigate the athermal high pressure behavior of the elastic properties of MgSiO3 ilmenite up to 30 GPa using the ab initio pseudopotential method. Our results at zero pressure are in good agreement with single-crystal elasticity measurements. The elastic anisotropy is shown to decrease slightly under compression and hence to remain substantial (25 to 20% shear wave anisotropy and 16 to 10% longitudinal wave anisotropy) over the pressure regime studied. The directions of fastest and slowest wave propagation are found to change slightly with pressure as determined by the pressure dependence of c(14) and c(25). Comparisons with the elastic behavior of other deep transition zone phases such as ringwoodite and garnet show that ilmenite is likely to be the fastest and most anisotropic mineral in this region. Large contrasts (approximate to 10%) in velocities and densities between ilmenite and garnet are suggested to be significant for the interpretation of lateral structure in the transition zone

    Thermal Conductivity of Periclase (MgO) from First Principles

    Get PDF
    We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative of the Earth's core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative a = (partial derivative lnk/partial derivative ln rho)(Tau) = 4.6 +/- 1.2 and that k = 20 +/- 5 Wm(-1) K-1 at the core-mantle boundary, while also finding good agreement with extant experimental data at much lower pressures

    High-pressure elastic properties of major materials of Earth's mantle from first principles

    Get PDF
    The elasticity of materials is important for our understanding of processes ranging from brittle failure, to flexure, to the propagation of elastic waves. Seismologically revealed structure of the Earth's mantle, including the radial (one-dimensional) profile, lateral heterogeneity, and anisotropy are determined largely by the elasticity of the materials that make up this region. Despite its importance to geophysics, our knowledge of the elasticity of potentially relevant mineral phases at conditions typical of the Earth's mantle is still limited: Measuring the elastic constants at elevated pressure-temperature conditions in the laboratory remains a major challenge. Over the past several years, another approach has been developed based on first-principles quantum mechanical theory. First-principles calculations provide the ideal complement to the laboratory approach because they require no input from experiment; that is, there are no free parameters in the theory. Such calculations have true predictive power and can supply critical information including that which is difficult to measure experimentally. A review of high-pressure theoretical studies of major mantle phases shows a wide diversity of elastic behavior among important tetrahedrally and octahedrally coordinated Mg and Ca silicates and Mg, Ca, Al, and Si oxides. This is particularly apparent in the acoustic anisotropy, which is essential for understanding the relationship between seismically observed anisotropy and mantle flow. The acoustic anisotropy of the phases studied varies from zero to more than 50% and is found to depend on pressure strongly, and in some cases nonmonotonically. For example, the anisotropy in MgO decreases with pressure up to 15 GPa before increasing upon further compression, reaching 50% at a pressure of 130 GPa. Compression also has a strong effect on the elasticity through pressure-induced phase transitions in several systems. For example, the transition from stishovite to CaCl2 structure in silica is accompanied by a discontinuous change in the shear (S) wave velocity that is so large (60%) that it may be observable seismologically. Unifying patterns emerge as well: Eulerian finite strain theory is found to provide a good description of the pressure dependence of the elastic constants for most phases. This is in contrast to an evaluation of Birch's law, which shows that this systematic accounts only roughly for the effect of pressure, composition, and structure on the longitudinal (P) wave velocity. The growing body of theoretical work now allows a detailed comparison with seismological observations. The athermal elastic wave velocities of most important mantle phases are found to be higher than the seismic wave velocities of the mantle by amounts that are consistent with the anticipated effects of temperature and iron content on the P and S wave velocities of the phases studied. An examination of future directions focuses on strategies for extending first-principles studies to more challenging but geophysically relevant situations such as solid solutions, high-temperature conditions, and mineral composites

    Diffusional fractionation of helium isotopes in silicate melts

    Get PDF
    Estimating Helium (He) concentration and isotope composition of the mantle requires quantifying He loss during magma degassing. The knowledge of diffusional He isotope fractionation in silicate melts may be essential to constrain the He loss. Isotopic mass dependence of He diffusion can be empirically expressed as D^{3}He/D^{4}He = (4/3)^{β}, where D is the diffusivity of a He isotope. However, no studies have reported any β values for He in silicate melts due to technical challenges in both experiments and computations. Here, molecular dynamics simulations based on deep neural network potentials trained by ab initio data show that β for He in albite melt decreases from 0.355 ± 0.012 at 3000 K to 0.322 ± 0.019 at 1700 K. β in model basalt melt takes a smaller value from 0.322 ± 0.025 to 0.274 ± 0.027 over the same temperature range. Based on our results, we suggest using D^{3}He/D^{4}He values of 1.097 ± 0.006 and 1.082 ± 0.008 in natural rhyolite and basalt melt, respectively, to interpret measured He concentration and isotope composition of natural samples

    The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle

    Full text link
    The temperature anomalies in the Earth's mantle associated with thermal convection1 can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800K at 1000 km, 1500K at 2000 km, and possibly over 2000K at the core-mantle boundary.Comment: Published in: Nature 411, 934-937 (2001

    Transformation Pathways of Silica under High Pressure

    Full text link
    Concurrent molecular dynamics simulations and ab initio calculations show that densification of silica under pressure follows a ubiquitous two-stage mechanism. First, anions form a close-packed sub-lattice, governed by the strong repulsion between them. Next, cations redistribute onto the interstices. In cristobalite silica, the first stage is manifest by the formation of a metastable phase, which was observed experimentally a decade ago, but never indexed due to ambiguous diffraction patterns. Our simulations conclusively reveal its structure and its role in the densification of silica.Comment: 14 pages, 4 figure

    Pressure dependent electronic properties of MgO polymorphs: A first-principles study of Compton profiles and autocorrelation functions

    Full text link
    The first-principles periodic linear combination of atomic orbitals method within the framework of density functional theory implemented in the CRYSTAL06 code has been applied to explore effect of pressure on the Compton profiles and autocorrelation functions of MgO. Calculations are performed for the B1, B2, B3, B4, B8_1 and h-MgO polymorphs of MgO to compute lattice constants and bulk moduli. The isothermal enthalpy calculations predict that B4 to B8_1, h-MgO to B8_1, B3 to B2, B4 to B2 and h-MgO to B2 transitions take place at 2, 9, 37, 42 and 64 GPa respectively. The high pressure transitions B8_1 to B2 and B1 to B2 are found to occur at 340 and 410 GPa respectively. The pressure dependent changes are observed largely in the valence electrons Compton profiles whereas core profiles are almost independent of the pressure in all MgO polymorphs. Increase in pressure results in broadening of the valence Compton profiles. The principal maxima in the second derivative of Compton profiles shifts towards high momentum side in all structures. Reorganization of momentum density in the B1 to B2 structural phase transition is seen in the first and second derivatives before and after the transition pressure. Features of the autocorrelation functions shift towards lower r side with increment in pressure.Comment: 19 pages, 8 figures, accepted for publication in Journal of Materials Scienc

    Development of anisotropic structure in the Earth's lower mantle by solid-state convection

    Full text link
    Seismological observations reveal highly anisotropic patches at the bottom of the Earth's lower mantle, whereas the bulk of the mantle has been observed to be largely isotropic(1-4). These patches have been interpreted to correspond to areas where subduction has taken place in the past or to areas where mantle plumes are upwelling, but the underlying cause for the anisotropy is unknown-both shape-preferred orientation of elastically heterogenous materials(5) and lattice-preferred orientation of a homogeneous material(6-8) have been proposed. Both of these mechanisms imply that large-strain deformation occurs within the anisotropic regions, but the geodynamic implications of the mechanisms differ. Shape-preferred orientation would imply the presence of large elastic (and hence chemical) heterogeneity whereas lattice-preferred orientation requires deformation at high stresses. Here we show, on the basis of numerical modelling incorporating mineral physics of elasticity and development of lattice-preferred orientation, that slab deformation in the deep lower mantle can account for the presence of strong anisotropy in the circum-Pacific region. In this model-where development of the mineral fabric (the alignment of mineral grains) is caused solely by solid-state deformation of chemically homogeneous mantle material-anisotropy is caused by large-strain deformation at high stresses, due to the collision of subducted slabs with the core-mantle boundary.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62804/1/416310a.pd

    Demographic, socio-economic, and cultural factors affecting fertility differentials in Nepal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditionally Nepalese society favors high fertility. Children are a symbol of well-being both socially and economically. Although fertility has been decreasing in Nepal since 1981, it is still high compared to many other developing countries. This paper is an attempt to examine the demographic, socio-economic, and cultural factors for fertility differentials in Nepal.</p> <p>Methods</p> <p>This paper has used data from the Nepal Demographic and Health Survey (NDHS 2006). The analysis is confined to ever married women of reproductive age (8,644). Both bivariate and multivariate analyses have been performed to describe the fertility differentials. The bivariate analysis (one-way ANOVA) was applied to examine the association between children ever born and women's demographic, socio-economic, and cultural characteristics. Besides bivariate analysis, the net effect of each independent variable on the dependent variable after controlling for the effect of other predictors has also been measured through multivariate analysis (multiple linear regressions).</p> <p>Results</p> <p>The mean numbers of children ever born (CEB) among married Nepali women of reproductive age and among women aged 40-49 were three and five children, respectively. There are considerable differentials in the average number of children ever born according to women's demographic, socio-economic, and cultural settings. Regression analysis revealed that age at first marriage, perceived ideal number of children, place of residence, literacy status, religion, mass media exposure, use of family planning methods, household headship, and experience of child death were the most important variables that explained the variance in fertility. Women who considered a higher number of children as ideal (β = 0.03; p < 0.001), those who resided in rural areas (β = 0.02; p < 0.05), Muslim women (β = 0.07; p < 0.001), those who had ever used family planning methods (β = 0.08; p < 0.001), and those who had a child-death experience (β = 0.31; p < 0.001) were more likely to have a higher number of CEB compared to their counterparts. On the other hand, those who married at a later age (β = -0.15; p < 0.001), were literate (β = -0.05; p < 0.001), were exposed to both (radio/TV) mass media (β = -0.05; p < 0.001), were richest (β = -0.12; p < 0.001), and were from female-headed households (β = -0.02; p < 0.05) had a lower number of children ever born than their counterparts.</p> <p>Conclusion</p> <p>The average number of children ever born is high among women in Nepal. There are many contributing factors for the high fertility, among which are age at first marriage, perceived ideal number of children, literacy status, mass media exposure, wealth status, and child-death experience by mothers. All of these were strong predictors for CEB. It can be concluded that programs should aim to reduce fertility rates by focusing on these identified factors so that fertility as well as infant and maternal mortality and morbidity will be decreased and the overall well-being of the family maintained and enhanced.</p
    • …
    corecore