56 research outputs found

    Federated learning enables big data for rare cancer boundary detection

    Get PDF
    Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25,256 MRI scans from 6,314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing

    Hospital Networks and the Dispersal of Hospital-Acquired Pathogens by Patient Transfer

    Get PDF
    Hospital-acquired infections (HAI) are often seen as preventable incidents that result from unsafe practices or poor hospital hygiene. This however ignores the fact that transmissibility is not only a property of the causative organisms but also of the hosts who can translocate bacteria when moving between hospitals. In an epidemiological sense, hospitals become connected through the patients they share. We here postulate that the degree of hospital connectedness crucially influences the rates of infections caused by hospital-acquired bacteria. To test this hypothesis, we mapped the movement of patients based on the UK-NHS Hospital Episode Statistics and observed that the proportion of patients admitted to a hospital after a recent episode in another hospital correlates with the hospital-specific incidence rate of MRSA bacteraemia as recorded by mandatory reporting. We observed a positive correlation between hospital connectedness and MRSA bacteraemia incidence rate that is significant for all financial years since 2001 except for 2008–09. All years combined, this correlation is positive and significantly different from zero (partial correlation coefficient r = 0.33 (0.28 to 0.38)). When comparing the referral pattern for English hospitals with referral patterns observed in the Netherlands, we predict that English hospitals more likely see a swifter and more sustained spread of HAIs. Our results indicate that hospitals cannot be viewed as individual units but rather should be viewed as connected elements of larger modular networks. Our findings stress the importance of cooperative effects that will have a bearing on the planning of health care systems, patient management and hospital infection control

    First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients

    Get PDF
    BACKGROUND: DepoVax(TM) is a novel non-emulsion depot-forming vaccine platform with the capacity to significantly enhance the immunogenicity of peptide cancer antigens. Naturally processed HLA-A2 restricted peptides presented by breast, ovarian and prostate cancer cells were used as antigens to create a therapeutic cancer vaccine, DPX-0907. METHODS: A phase I clinical study was designed to examine the safety and immune activating potential of DPX-0907 in advanced stage breast, ovarian and prostate cancer patients. A total of 23 late stage cancer patients were recruited and were divided into two dose/volume cohorts in a three immunization protocol. RESULTS: DPX-0907 was shown to be safe with injection site reactions being the most commonly reported adverse event. All breast cancer patients (3/3), most of ovarian (5/6) and one third of prostate (3/9) cancer patients exhibited detectable immune responses, resulting in a 61% immunological response rate. Immune responses were generally observed in patients with better disease control after their last prior treatment. Antigen-specific responses were detected in 73% of immune responders (44% of evaluable patients) after the first vaccination. In 83% of immune responders (50% of evaluable patients), peptide-specific T cell responses were detected at ≥2 time points post vaccination with 64% of the responders (39% of evaluable patients) showing evidence of immune persistence. Immune monitoring also demonstrated the generation of antigen-specific T cell memory with the ability to secrete multiple Type 1 cytokines. CONCLUSIONS: The novel DepoVax formulation promotes multifunctional effector memory responses to peptide-based tumor associated antigens. The data supports the capacity of DPX-0907 to elicit Type-1 biased immune responses, warranting further clinical development of the vaccine. This study underscores the importance of applying vaccines in clinical settings in which patients are more likely to be immune competent. TRIAL REGISTRATION: ClinicalTrials.gov NCT0109584

    Amiloride Enhances Antigen Specific CTL by Faciliting HBV DNA Vaccine Entry into Cells

    Get PDF
    The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs) both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-γ+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14
    corecore