41 research outputs found

    Development of a lightweight cryogenic insulating system Final report, 30 Jun. 1964 - 31 May 1966

    Get PDF
    Lightweight external panel insulation systems for thermal protection of cryogenic launch vehicle propellant tank

    Omada: robust clustering of transcriptomes through multiple testing

    Get PDF
    Background Cohort studies increasingly collect biosamples for molecular profiling and are observing molecular heterogeneity. High-throughput RNA sequencing is providing large datasets capable of reflecting disease mechanisms. Clustering approaches have produced a number of tools to help dissect complex heterogeneous datasets, but selecting the appropriate method and parameters to perform exploratory clustering analysis of transcriptomic data requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent. To address this, we have developed Omada, a suite of tools aiming to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning–based functions. Findings The efficiency of each tool was tested with 7 datasets characterized by different expression signal strengths to capture a wide spectrum of RNA expression datasets. Our toolkit’s decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Within datasets with less clear biological distinctions, our tools either formed stable subgroups with different expression profiles and robust clinical associations or revealed signs of problematic data such as biased measurements. Conclusions In conclusion, Omada successfully automates the robust unsupervised clustering of transcriptomic data, making advanced analysis accessible and reliable even for those without extensive machine learning expertise. Implementation of Omada is available at http://bioconductor.org/packages/omada/

    Unsupervised machine learning to investigate trajectory patterns of COVID-19 symptoms and physical activity measured via the MyHeart Counts App and smart devices

    Get PDF
    Previous studies have associated COVID-19 symptoms severity with levels of physical activity. We therefore investigated longitudinal trajectories of COVID-19 symptoms in a cohort of healthcare workers (HCWs) with non-hospitalised COVID-19 and their real-world physical activity. 121 HCWs with a history of COVID-19 infection who had symptoms monitored through at least two research clinic visits, and via smartphone were examined. HCWs with a compatible smartphone were provided with an Apple Watch Series 4 and were asked to install the MyHeart Counts Study App to collect COVID-19 symptom data and multiple physical activity parameters. Unsupervised classification analysis of symptoms identified two trajectory patterns of long and short symptom duration. The prevalence for longitudinal persistence of any COVID-19 symptom was 36% with fatigue and loss of smell being the two most prevalent individual symptom trajectories (24.8% and 21.5%, respectively). 8 physical activity features obtained via the MyHeart Counts App identified two groups of trajectories for high and low activity. Of these 8 parameters only ‘distance moved walking or running’ was associated with COVID-19 symptom trajectories. We report a high prevalence of long-term symptoms of COVID-19 in a non-hospitalised cohort of HCWs, a method to identify physical activity trends, and investigate their association. These data highlight the importance of tracking symptoms from onset to recovery even in non-hospitalised COVID-19 individuals. The increasing ease in collecting real-world physical activity data non-invasively from wearable devices provides opportunity to investigate the association of physical activity to symptoms of COVID-19 and other cardio-respiratory diseases

    Vicinal Surface with Langmuir Adsorption: A Decorated Restricted Solid-on-solid Model

    Full text link
    We study the vicinal surface of the restricted solid-on-solid model coupled with the Langmuir adsorbates which we regard as two-dimensional lattice gas without lateral interaction. The effect of the vapor pressure of the adsorbates in the environmental phase is taken into consideration through the chemical potential. We calculate the surface free energy ff, the adsorption coverage Θ\Theta, the step tension γ\gamma, and the step stiffness γ~\tilde{\gamma} by the transfer matrix method combined with the density-matrix algorithm. Detailed step-density-dependence of ff and Θ\Theta is obtained. We draw the roughening transition curve in the plane of the temperature and the chemical potential of adsorbates. We find the multi-reentrant roughening transition accompanying the inverse roughening phenomena. We also find quasi-reentrant behavior in the step tension.Comment: 7 pages, 12 figures (png format), RevTeX 3.1, submitted to Phys. Rev.

    The Pathway Coexpression Network: Revealing pathway relationships.

    Get PDF
    A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer's Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/

    Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood

    Get PDF
    Idiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease diagnosed by right heart catheterisation and the exclusion of other forms of pulmonary arterial hypertension, producing a heterogeneous population with varied treatment response. Here we show unsupervised machine learning identification of three major patient subgroups that account for 92% of the cohort, each with unique whole blood transcriptomic and clinical feature signatures. These subgroups are associated with poor, moderate, and good prognosis. The poor prognosis subgroup is associated with upregulation of the ALAS2 and downregulation of several immunoglobulin genes, while the good prognosis subgroup is defined by upregulation of the bone morphogenetic protein signalling regulator NOG, and the C/C variant of HLA-DPA1/DPB1 (independently associated with survival). These findings independently validated provide evidence for the existence of 3 major subgroups (endophenotypes) within the IPAH classification, could improve risk stratification and provide molecular insights into the pathogenesis of IPAH

    Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood

    Get PDF
    Idiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease diagnosed by right heart catheterisation and the exclusion of other forms of pulmonary arterial hypertension, producing a heterogeneous population with varied treatment response. Here we show unsupervised machine learning identification of three major patient subgroups that account for 92% of the cohort, each with unique whole blood transcriptomic and clinical feature signatures. These subgroups are associated with poor, moderate, and good prognosis. The poor prognosis subgroup is associated with upregulation of the ALAS2 and downregulation of several immunoglobulin genes, while the good prognosis subgroup is defined by upregulation of the bone morphogenetic protein signalling regulator NOG, and the C/C variant of HLA-DPA1/DPB1 (independently associated with survival). These findings independently validated provide evidence for the existence of 3 major subgroups (endophenotypes) within the IPAH classification, could improve risk stratification and provide molecular insights into the pathogenesis of IPAH
    corecore