6 research outputs found

    Synthesis and Thermal Characterization of Polyurethanes Obtained from Cottonseed and Corn Oil-Based Polyols

    Get PDF
    The use of vegetable oils to replace fossil feedstock has become an area of opportunity and a priority for study in the field of polymer science. Vegetable oils are considered as renewable resources with high potential, low cost and full availability. The aim of this study is the synthesis of biobased polyols from cottonseed oil (Gossypium barbadanse) and corn oil (Zea mays) as feedstock. Their synthesis was successfully performed, as can be concluded from the determination of their hydroxyl index as well as the structural and thermal characterization carried out in this work. Polyurethanes from biobased polyols were synthesized with two different isocyanates (HDI and MDI) and variable polyol/isocyanate ratio and they were further characterized by infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy, concluding that cottonseed and corn oils could be considered as valid alternatives for the synthesis of biobased polymeric materials.The authors thank the Spanish Ministry of Economy and Competitiveness (MAT2014-59242-C2-2-R) and CONACYT-Mexico (No.CB06825 and doctoral scholarship No.234299/212279) for their financial support

    What do we know about nutrient-based strategies targeting molecular mechanisms associated with obesity-related fatty liver disease?

    No full text
    Obesity is a risk factor for developing nonalcoholic fatty liver disease (NAFLD), and the associated molecular mechanisms could be targeted with nutrient-based strategies. Therefore, it is necessary to review the current mechanisms to propose further treatments. Obesity facilitates the onset of insulin resistance, lipidic abnormalities, hepatic fat accumulation, lipid peroxidation, mitochondrial dysfunction, excessive reactive oxygen species (ROS) production, and inflammation, all related to further steatosis progression and fibrosis. Microbiota alterations can also influence liver disease by the translocation of pathogenic bacteria, energy extraction from short chain fatty acids (SCFAs), intestinal suppression of the expression of fasting-induced adipose factor (FIAF), reduction of bile acids, and altered choline metabolism. There are also genetic polymorphisms in metabolic proteins that predispose to a higher risk of liver diseases, such as those found in the patatin-like phospholipase domain-containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) or also known as lysophosphatidylinositol acyltransferase 1 (LPIAT1), transmembrane channel-like 4 genes (TMC4), fat mass and obesity-associated protein (FTO), the b Klotho (KLB) and carboxylesterase (CES1). No clear dietary guidelines target all mechanisms related to NAFLD development and progression. However, energy and carbohydrate intake restriction, regular physical exercise, supplementation of antioxidants, and restoration of gut microbiota seem to have beneficial effects on the new proposed features of NAFLD

    Immunometabolic Effect of Cholesterol in Hepatitis C Infection: Implications in Clinical Management and Antiviral Therapy

    No full text
    Hepatitis C virus (HCV) is a lipid-enveloped virion particle that causes infection to the liver, and as part of its life cycle, it disrupts the host lipid metabolic machinery, particularly the cholesterol synthesis pathway. The innate immune response generated by liver resident immune cells is responsible for successful viral eradication. Unfortunately, most patients fail to eliminate HCV and progress to chronic infection. Chronic infection is associated with hepatic fat accumulation and inflammation that triggers fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Despite that the current direct-acting antiviral agents have increased the cure rate of HCV infection, viral genotype and the host genetic background influence both the immune response and lipid metabolism. In this context, recent evidence has shown that cholesterol and its derivatives such as oxysterols might modulate and potentialize the hepatic innate immune response generated against HCV. The impairment of the HCV life cycle modulated by serum cholesterol could be relevant for the clinical management of HCV-infected patients before and after treatment. Alongside, cholesterol levels are modulated either by genetic variations in IL28B, ApoE, and LDLR or by dietary components. Indeed, some nutrients such as unsaturated fatty acids have demonstrated to be effective against HCV replication. Thus, cholesterol modifications may be considered as a new adjuvant strategy for HCV infection therapy by providing a biochemical tool that guides treatment decisions, an improved treatment response and favoring viral clearance. Herein, the mechanisms by which cholesterol contributes to the immune response against HCV infection and how genetic and environmental factors may affect this role are reviewed

    OBTAINING COTTON SEED OIL EPOXIDIZED USING AN WEAK ACID

    No full text
    In this study, parameters which influence the chemical modification under mild conditions using a weak organic acid, fatty acids of unsaturated oil, cottonseed to produce epoxidized oil, which is a useful precursor in obtaining resins epoxy industrial importance, were evaluated. We studied the following reaction parameters: concentration of acetic acid, hydrogen peroxide, catalyst and solvent, as well as temperature, agitation rate and reaction time. The results showed that the agitation and temperature are the parameters which influence the modification of unsaturated fatty acids. Studied conditions allowed obtaining up to 70% relative conversion of oxygen-oxirane from cottonseed oil

    Increase of drug use and genotype 3 in HCV-infected patients from Central West and Northeast Mexico

    No full text
    Background. The evolving pattern of HCV genotypes (GTs) and risk factors (RFs) in HCV-infected patients in Mexico is poorly understood. This study aimed to access the temporal trend of HCV GTs and RFs in HCV patients from two care centers.Material and methods. Chronic HCV patients [177 and 153 patients from the Northeast (NE) and Central West (CW) regions, respectively] were selected. Baseline features were demographics, date of birth (DOB), blood transfusion before 1992 (BTb1992), RFs, sexual promiscuity (SP), dental procedure (DP), injection drug use (IDU), viral load (VL), GTs, cirrhosis status and antiviral therapy (AT). Data were analyzed by Chi-square test for trends, unpaired T-test, and logistic regression.Results. HCV GT distribution was: GT1, 67%; GT2, 16%; GT3, 12% and GT4, 1%. RFs were BTb1992, 56%; surgeries, 56%; tattooing, 18% and IDU, 16%. GT1a mostly prevailed in CW than NE patients. GT1b, surgeries, BTb1992 and cirrhosis were more prevalent in older patients (p < 0.05); GT3, male gender IDU, SP, and tattooing showed an upward trend as younger were the patients in both regions (p < 0.05), contrariwise to the prevalence of GT1b. BTb1992 and surgeries were seen in elder women; BTb1992 was an independent RF for GT1. Age ≥ 50 years old, GT1 and exposure to AT (p < 0.05) were associated with cirrhosis. Conclusion. GT1a prevalence in CW Mexico remained stable, whereas GT3 increased and GT1b decreased in younger patients in both regions, along with associated RFs. Further regional molecular epidemiology and RF analyses are required in order to avoid the dissemination of new cases of HCV infection
    corecore