10 research outputs found

    Target cell-specific plasticity rules of NMDA receptor-mediated synaptic transmission in the hippocampus

    Get PDF
    Long-term potentiation and depression of NMDA receptor-mediated synaptic transmission (NMDAR LTP/LTD) can significantly impact synapse function and information transfer in several brain areas. However, the mechanisms that determine the direction of NMDAR plasticity are poorly understood. Here, using physiologically relevant patterns of presynaptic and postsynaptic burst activities, whole-cell patch clamp recordings, 2-photon laser calcium imaging in acute rat hippocampal slices and immunoelectron microscopy, we tested whether distinct calcium dynamics and group I metabotropic glutamate receptor (I-mGluR) subtypes control the sign of NMDAR plasticity. We found that postsynaptic calcium transients (CaTs) in response to hippocampal MF stimulation were significantly larger during the induction of NMDAR-LTP compared to NMDAR-LTD at the MF-to-CA3 pyramidal cell (MF-CA3) synapse. This difference was abolished by pharmacological blockade of mGluR5 and was significantly reduced by depletion of intracellular calcium stores, whereas blocking mGluR1 had no effect on these CaTs. In addition, we discovered that MF to hilar mossy cell (MF-MC) synapses, which share several structural and functional commonalities with MF-CA3 synapses, also undergoes NMDAR plasticity. To our surprise, however, we found that the postsynaptic distribution of I-mGluR subtypes at these two synapses differ, and the same induction protocol that induces NMDAR-LTD at MF-CA3 synapses, only triggered NMDAR-LTP at MF-MC synapses, despite a comparable calcium dynamics. Thus, postsynaptic calcium dynamics alone cannot predict the sign of NMDAR plasticity, indicating that both postsynaptic calcium rise and the relative contribution of I-mGluR subtypes likely determine the learning rules of NMDAR plasticity.This research was supported by the National Institutes of Health (NIH), R01-NS113600, R01-MH125772, R01-MH116673, and R01-MH081935 to PC, and by The Basque Government (IT1620-22), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III (RD21/0009/0006), and Ministry of Science and Innovation (PID2019-107548RB-I00) to PG

    Presynaptic NMDA receptors facilitate short-term plasticity and BDNF release at hippocampal mossy fiber synapses

    No full text
    Neurotransmitter release is a highly controlled process by which synapses can critically regulate information transfer within neural circuits. While presynaptic receptors – typically activated by neurotransmitters and modulated by neuromodulators – provide a powerful way of fine-tuning synaptic function, their contribution to activity-dependent changes in transmitter release remains poorly understood. Here, we report that presynaptic NMDA receptors (preNMDARs) at mossy fiber boutons in the rodent hippocampus can be activated by physiologically relevant patterns of activity and selectively enhance short-term synaptic plasticity at mossy fiber inputs onto CA3 pyramidal cells and mossy cells, but not onto inhibitory interneurons. Moreover, preNMDARs facilitate brain-derived neurotrophic factor release and contribute to presynaptic calcium rise. Taken together, our results indicate that by increasing presynaptic calcium, preNMDARs fine-tune mossy fiber neurotransmission and can control information transfer during dentate granule cell burst activity that normally occur in vivo

    A Combined Optogenetic-Knockdown Strategy Reveals a Major Role of Tomosyn in Mossy Fiber Synaptic Plasticity

    No full text
    Neurotransmitter release probability (Pr) largely determines the dynamic properties of synapses. While much is known about the role of presynaptic proteins in transmitter release, their specific contribution to synaptic plasticity is unclear. One such protein, tomosyn, is believed to reduce Pr by interfering with the SNARE complex formation. Tomosyn is enriched at hippocampal mossy fiber-to-CA3 pyramidal cell synapses (MF-CA3), which characteristically exhibit low Pr, strong synaptic facilitation, and pre-synaptic protein kinase A (PKA)-dependent long-term potentiation (LTP). To evaluate tomosyn’s role in MF-CA3 function, we used a combined knockdown (KD)-optogenetic strategy whereby presynaptic neurons with reduced tomosyn levels were selectively activated by light. Using this approach in mouse hippocampal slices, we found that facilitation, LTP, and PKA-induced potentiation were significantly impaired at tomosyn-deficient synapses. These findings not only indicate that tomosyn is a key regulator of MF-CA3 plasticity but also highlight the power of a combined KD-optogenetic approach to determine the role of presynaptic proteins

    Histamine reduces gap junctional communication of human tonsil high endothelial cells in culture

    No full text
    The regulation of gap junctional communication by histamine was studied in primary cultures of human tonsil high endothelial cells (HUTECs). We evaluated intercellular communication, levels, state of phosphorylation, and cellular distribution of gap junction protein subunits, mainly connexin (Cx)43. Histamine induced a time-dependent reduction in dye coupling (Lucifer yellow) associated with reduction in connexin43 localized at cell–cell appositions (immunofluorescence), without changes in levels and phosphorylation state of connexin43 (immunoblots). These effects were prevented with chlorpheniramine, an H1 receptor blocker; indomethacin, a cyclooxygenase blocker; or GF109203X, a protein kinase C inhibitor. Treatment with phorbol myristate acetate, a protein kinase C activator, and 4bromo (4Br)-A23187, a calcium ionophore, mimicked the histamine-induced effects on dye coupling. 8Bromo-cAMP doubled the dye coupling extent and prevented the histamine-induced reduction in incidence of dye coupling. After 24-h histamine treatment, known to desensitize H1 receptors, reapplication of histamine increased cell coupling in a way prevented by ranitidine, an H2 receptor blocker. Thus, activation of H1 and H2 receptors, which increase intracellular levels of free Ca2+ and cAMP, respectively, may affect gap junctional communication in opposite ways. Stabilization of actin filaments with phalloidine diminished but did not totally prevent histamine-induced cell shape changes and reduction in dye coupling. Hence, the histamine-induced reduction in gap junctional communication between HUTEC is mediated by cytoskeleton-dependent and -independent mechanisms and might contribute to modulate endothelial function in lymphoid tissue. D 2004 Elsevier Inc. All rights reserved

    Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation

    No full text
    Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report that the activity-dependent transcription factor Npas4 selectively regulates the structure and strength of MF-CA3 synapses by restricting the number of their functional synaptic contacts without affecting the other synaptic inputs onto CA3 pyramidal neurons. Using an activity-dependent reporter, we identified CA3 pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation. Weng et al. report that the transcription factor Npas4 selectively regulates the number of functional synaptic contacts between CA3 pyramidal neurons and mossy fibers, allowing for learning-induced modification of MF-CA3 synapses during contextual memory formation.NIH (Grants DA017392, NS090473, MH081935, MH091220, NS088421, and DC014701
    corecore