135 research outputs found

    Fine mapping and identification of serum urate loci in American Indians: The Strong Heart Family Study

    Get PDF
    While studies have reported genetic loci affecting serum urate (SU) concentrations, few studies have been conducted in minority populations. Our objective for this study was to identify genetic loci regulating SU in a multigenerational family-based cohort of American Indians, the Strong Heart Family Study (SHFS). We genotyped 162,718 single nucleotide polymorphisms (SNPs) in 2000 SHFS participants using an Illumina MetaboChip array. A genome-wide association analysis of SU was conducted using measured genotype analysis approach accounting for kinships in SOLAR, and meta-analysis in METAL. Our results showed strong association of SU with rs4481233, rs9998811, rs7696092 and rs13145758 (minor allele frequency (MAF) = 25–44%; P \u3c 3 × 10−14) of solute carrier family 2, member 9 (SLC2A9) and rs41481455, rs2231142 and rs1481012 (MAF = 29%; p \u3c 3 × 10−9) of ATP-binding cassette protein, subfamily G, member 2 (ABCG2). Carriers of G alleles of rs9998811, rs4148155 and rs1481012 and A alleles of rs4481233, rs7696092 and rs13145758 and rs2231142 had lower SU concentrations as compared to non-carriers. Genetic analysis of SU conditional on significant SLC2A9 and ABCG2 SNPs revealed new loci, nucleobindin 1 (NUCB1) and neuronal PAS domain protein 4 (NPAS4) (p \u3c6× 10−6). To identify American Indian-specific SNPs, we conducted targeted sequencing of key regions of SLC2A9. A total of 233 SNPs were identified of which 89 were strongly associated with SU (p \u3c 7.1 × 10−10) and 117 were American Indian specific. Analysis of key SNPs in cohorts of Mexican-mestizos, European, Indian and East Asian ancestries showed replication of common SNPs, including our lead SNPs. Our results demonstrate the association of SU with uric acid transporters in a minority population of American Indians and potential novel associations of SU with neuronal-related genes which warrant further investigation

    Association of Cardiometabolic Genes with Arsenic Metabolism Biomarkers in American Indian Communities: The Strong Heart Family Study (SHFS)

    Get PDF
    Background: Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. Objectives: We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). Methods: We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography–inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. Results: Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p \u3c 9.33 × 10–5). Conclusions: This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24

    Genetic variants and physical activity interact to affect bone density in Hispanic children

    Get PDF
    Background: Our aim was to investigate if moderate to vigorous physical activity (MVPA), calcium intake interacts with bone mineral density (BMD)-related single nucleotide polymorphisms (SNPs) to influence BMD in 750 Hispanic children (4-19y) of the cross-sectional Viva La Familia Study. Methods: Physical activity and dietary intake were measured by accelerometers and multiple-pass 24 h dietary recalls, respectively. Total body and lumbar spine BMD were measured by dual energy X-ray absorptiometry. A polygenic risk score (PRS) was computed based on SNPs identified in published literature. Regression analysis was conducted with PRSs, MVPA and calcium intake with total body and lumbar spine BMD. Results: We found evidence of statistically significant interaction effects between the PRS and MVPA on total body BMD and lumbar spine BMD (p \u3c 0.05). Higher PRS was associated with a lower total body BMD (β = − 0.040 ± 0.009, p = 1.1 × 10− 5 ) and lumbar spine BMD (β = − 0.042 ± 0.013, p = 0.0016) in low MVPA group, as compared to high MVPA group (β = − 0.015 ± 0.006, p = 0.02; β = 0.008 ± 0.01, p = 0.4, respectively). Discussion: The study indicated that calcium intake does not modify the relationship between genetic variants and BMD, while it implied physical activity interacts with genetic variants to affect BMD in Hispanic children. Due to limited sample size of our study, future research on gene by environment interaction on bone health and functional studies to provide biological insights are needed

    Genetics of kidney disease and related cardiometabolic phenotypes in Zuni Indians: the Zuni Kidney Project

    Get PDF
    The objective of this study is to identify genetic factors associated with chronic kidney disease (CKD) and related cardiometabolic phenotypes among participants of the Genetics of Kidney Disease in Zuni Indians study. The study was conducted as a community-based participatory research project in the Zuni Indians, a small endogamous tribe in rural New Mexico. We recruited 998 members from 28 extended multigenerational families, ascertained through probands with CKD who had at least one sibling with CKD. We used the Illumina Infinium Human1M-Duo version 3.0 BeadChips to type 1.1 million single nucleotide polymorphisms (SNPs). Prevalence estimates for CKD, hyperuricemia, diabetes, and hypertension were 24%, 30%, 17% and 34%, respectively. We found a significant (p \u3c 1.58 × 10-7) association for a SNP in a novel gene for serum creatinine (PTPLAD2). We replicated significant associations for genes with serum uric acid (SLC2A9), triglyceride levels (APOA1, BUD13, ZNF259), and total cholesterol (PVRL2). We found novel suggestive associations (p \u3c 1.58 × 10-6) for SNPs in genes with systolic (OLFML2B), and diastolic blood pressure (NFIA). We identified a series of genes associated with CKD and related cardiometabolic phenotypes among Zuni Indians, a population with a high prevalence of kidney disease. Illuminating genetic variations that modulate the risk for these disorders may ultimately provide a basis for novel preventive strategies and therapeutic interventions

    Genetic Variants Related to Cardiometabolic Traits Are Associated to B Cell Function, Insulin Resistance, and Diabetes Among AmeriCan Indians: The Strong Heart Family Study

    Get PDF
    Background: Genetic research may inform underlying mechanisms for disparities in the burden of type 2 diabetes mellitus among American Indians. Our objective was to assess the association of genetic variants in cardiometabolic candidate genes with B cell dysfunction via HOMA-B, insulin resistance via HOMA-IR, and type 2 diabetes mellitus in the Strong Heart Family Study (SHFS). Methods and Results: We examined the association of variants, previously associated with cardiometabolic traits (∼200,000 from Illumina Cardio MetaboChip), using mixed models of HOMA-B residuals corrected for HOMA-IR (cHOMA-B), log transformed HOMA-IR, and incident diabetes, adjusted for age, sex, population stratification, and familial relatedness. Center-specific estimates were combined using fixed effect meta-analyses. We used Bonferroni correction to account for multiple testing (P \u3c 4.13 × 10−7). We also assessed the association between variants in candidate diabetes genes with these metabolic traits. We explored the top SNPs in an independent, replication sample from Southwestern Arizona. We identified significant associations with cHOMA-B for common variants at 26 loci of which 8 were novel (PRSS7, FCRL5, PEL1, LRP12, IGLL1, ARHGEF10, PARVA, FLJ16686). The most significant variant association with cHOMA-B was observed on chromosome 5 for an intergenic variant near PARP8 (rs2961831, P = 6.39 × 10−9). In the replication study, we found a signal at rs4607517 near GCK/YKT6 (P = 0.01). Variants near candidate diabetes genes (especially GCK and KCNQ1) were also nominally associated with HOMA-IR and cHOMA-B. Conclusion: We identified variants at novel loci and confirmed those at known candidate diabetes loci associations for cHOMA-B. This study also provided evidence for association of variants at KCNQ2, CTNAA2, and KCNQ1with cHOMA-B among American Indians. Further studies are needed to account for the high heritability of diabetes among the American Indian participants of the SHFS cohort

    Association of protein function-altering variants with cardiometabolic traits:the strong heart study

    Get PDF
    Clinical and biomarker phenotypic associations for carriers of protein function-altering variants may help to elucidate gene function and health effects in populations. We genotyped 1127 Strong Heart Family Study participants for protein function-altering single nucleotide variants (SNV) and indels selected from a low coverage whole exome sequencing of American Indians. We tested the association of each SNV/indel with 35 cardiometabolic traits. Among 1206 variants (average minor allele count = 20, range of 1 to 1064), similar to 43% were not present in publicly available repositories. We identified seven SNV-trait significant associations including a missense SNV at ABCA10 (rs779392624, p= 8 x 10(-9)) associated with fasting triglycerides, which gene product is involved in macrophage lipid homeostasis. Among non-diabetic individuals, missense SNVs at four genes were associated with fasting insulin adjusted for BMI (PHIL, chr6:79,650,711, p= 2.1 x 10(-6); TRPM3, rs760461668, p= 5 x10(-8); SPTY2D1, rs756851199, p= 1.6 x 10(-8); and TSPO, rs566547284, p= 2.4 x 10(-6)). PHIL encoded protein is involved in pancreatic beta-cell proliferation and survival, and TRPM3 protein mediates calcium signaling in pancreatic beta-cells in response to glucose. A genetic risk score combining increasing insulin risk alleles of these four genes was associated with 53% (95% confidence interval 1.09, 2.15) increased odds of incident diabetes and 83% (95% confidence interval 1.35, 2.48) increased odds of impaired fasting glucose at follow-up. Our study uncovered novel gene-trait associations through the study of protein-coding variants and demonstrates the advantages of association screenings targeting diverse and high-risk populations to study variants absent in publicly available repositories

    Serum uric acid concentrations and SLC2A9 genetic variation in Hispanic children: the Viva La Familia Study

    Get PDF
    Background: Elevated concentrations of serum uric acid are associated with increased risk of gout and renal and cardiovascular diseases. Genetic studies in adults have consistently identified associations of solute carrier family 2, member 9 (SLC2A9), polymorphisms with variation in serum uric acid. However, it is not known whether the association of serum uric acid with SLC2A9 polymorphisms manifests in children

    Blood DNA methylation and liver cancer in American Indians: evidence from the Strong Heart Study

    Get PDF
    Purpose: Liver cancer incidence among American Indians/Alaska Natives has risen over the past 20 years. Peripheral blood DNA methylation may be associated with liver cancer and could be used as a biomarker for cancer risk. We evaluated the association of blood DNA methylation with risk of liver cancer. Methods: We conducted a prospective cohort study in 2324 American Indians, between age 45 and 75 years, from Arizona, Oklahoma, North Dakota and South Dakota who participated in the Strong Heart Study between 1989 and 1991. Liver cancer deaths (n = 21) were ascertained using death certificates obtained through 2017. The mean follow-up duration (SD) for non-cases was 25.1 (5.6) years and for cases, 11.0 (8.8) years. DNA methylation was assessed from blood samples collected at baseline using MethylationEPIC BeadChip 850 K arrays. We used Cox regression models adjusted for age, sex, center, body mass index, low-density lipoprotein cholesterol, smoking, alcohol consumption, and immune cell proportions to examine the associations. Results: We identified 9 CpG sites associated with liver cancer. cg16057201 annotated to MRFAP1) was hypermethylated among cases vs. non-cases (hazard ratio (HR) for one standard deviation increase in methylation was 1.25 (95% CI 1.14, 1.37). The other eight CpGs were hypomethylated and the corresponding HRs (95% CI) ranged from 0.58 (0.44, 0.75) for cg04967787 (annotated to PPRC1) to 0.77 (0.67, 0.88) for cg08550308. We also assessed 7 differentially methylated CpG sites associated with liver cancer in previous studies. The adjusted HR for cg15079934 (annotated to LPS1) was 1.93 (95% CI 1.10, 3.39). Conclusions: Blood DNA methylation may be associated with liver cancer mortality and may be altered during the development of liver cancer.This work was supported by grants from the National Heart, Lung, and Blood Institute (NHLBI) (Contract Numbers 75N92019D00027, 75N92019D00028, 75N92019D00029 and 75N92019D00030) and previous Grants (R01HL090863, R01HL109315, R01HL109301, R01HL109284, R01HL109282, and R01HL109319 and Cooperative Agreements: U01HL41642, U01HL41652, U01HL41654, U01HL65520 and U01HL65521); by the National Institute of Environmental Health Sciences (Grant Numbers R25ES025505, R01ES032638, R01ES021367, R01ES025216, P42ES033719, P30ES009089); by the Chilean CONICYT/FONDECYT-POSTDOCTORADO Nº 3180486 and by a fellowship from “la Caixa” Foundation (ID 100010434) (fellowship code “LCF/BQ/DR19/11740016”). The funders had no role in the planning, conducting, analysis, interpretation, or writing of this study. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the ofcial views of the National Institutes of Health (United States) or the National Health Institute Carlos III (Spain).S

    Cadmium, Smoking, and Human Blood DNA Methylation Profiles in Adults from the Strong Heart Study.

    Get PDF
    The epigenetic effects of individual environmental toxicants in tobacco remain largely unexplored. Cadmium (Cd) has been associated with smoking-related health effects, and its concentration in tobacco smoke is higher in comparison with other metals. We studied the association of Cd and smoking exposures with human blood DNA methylation (DNAm) profiles. We also evaluated the implication of findings to relevant methylation pathways and the potential contribution of Cd exposure from smoking to explain the association between smoking and site-specific DNAm. We conducted an epigenome-wide association study of urine Cd and self-reported smoking (current and former vs. never, and cumulative smoking dose) with blood DNAm in 790,026 CpGs (methylation sites) measured with the Illumina Infinium Human MethylationEPIC (Illumina Inc.) platform in 2,325 adults 45-74 years of age who participated in the Strong Heart Study in 1989-1991. In a mediation analysis, we estimated the amount of change in DNAm associated with smoking that can be independently attributed to increases in urine Cd concentrations from smoking. We also conducted enrichment analyses and in silico protein-protein interaction networks to explore the biological relevance of the findings. At a false discovery rate (FDR)-corrected level of 0.05, we found 6 differentially methylated positions (DMPs) for Cd; 288 and 17, respectively, for current and former smoking status; and 77 for cigarette pack-years. Enrichment analyses of these DMPs displayed enrichment of 58 and 6 Gene Ontology and Kyoto Encyclopedia of Genes and Genomes gene sets, respectively, including biological pathways for cancer and cardiovascular disease. In in silico protein-to-protein networks, we observed key proteins in DNAm pathways directly and indirectly connected to Cd- and smoking-DMPs. Among DMPs that were significant for both Cd and current smoking (annotated to PRSS23, AHRR, F2RL3, RARA, and 2q37.1), we found statistically significant contributions of Cd to smoking-related DNAm. Beyond replicating well-known smoking epigenetic signatures, we found novel DMPs related to smoking. Moreover, increases in smoking-related Cd exposure were associated with differential DNAm. Our integrative analysis supports a biological link for Cd and smoking-associated health effects, including the possibility that Cd is partly responsible for smoking toxicity through epigenetic changes. https://doi.org/10.1289/EHP6345.This work was supported by grants by the National Heart, Lung, and Blood Institute (NHLBI) (under contract numbers 75N92019D00027, 75N92019D00028, 75N92019D00029, & 75N92019D00030) and previous grants (R01HL090863, R01HL109315, R01HL109301, R01HL109284, R01HL109282, and R01HL109319 and cooperative agreements U01HL41642, U01HL41652, U01HL41654, U01HL65520, and U01HL65521), by the National Institute of Health Sciences (R01ES021367, R01ES025216, P42ES010349, P30ES009089), by the Spanish Funds for Research In Health Sciences, Carlos III Health Institute, co-funded by European Regional Development Fund (CP12/03080 and PI15/00071), by Chilean CONICYT/FONDECYT-POSTDOCTORADO Nº3180486 (A.L.R.-C) and a fellowship from “La Caixa” Foundation (ID 100010434). The fellowship code is “LCF/BQ/DR19/11740016.”S
    corecore