100 research outputs found

    Impact of estrogen receptor gene polymorphisms and mRNA levels on obesity and lipolysis – a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The estrogen receptors α and β (<it>ESR1, ESR2</it>) have been implicated in adiposity, lipid metabolism and feeding behaviour. In this report we analyse <it>ESR1 </it>and <it>ESR2 </it>gene single nucleotide polymorphisms (SNPs) for association with obesity. We also relate adipose tissue <it>ESR1 </it>mRNA levels and <it>ESR1 </it>SNPs to adipocyte lipolysis and lipogenesis phenotypes.</p> <p>Methods</p> <p>23 <it>ESR1 </it>and 11 <it>ESR2 </it>tag-SNPs, covering most of the common haplotype variation in each gene according to HAPMAP data, were analysed by Chi<sup>2 </sup>for association with obesity in a cohort comprising 705 adults with severe obesity and 402 lean individuals. Results were replicated in a cohort comprising 837 obese and 613 lean subjects. About 80% of both cohorts comprised women and 20% men. Adipose tissue <it>ESR1 </it>mRNA was quantified in 122 women and related to lipolysis and lipogenesis by multiple regression. <it>ESR1 </it>SNPs were analysed for association with adipocyte lipolysis and lipogenesis phenotypes in 204 obese women by simple regression.</p> <p>Results</p> <p>No <it>ESR1 </it>SNP was associated with obesity. Five <it>ESR2 </it>SNPs displayed nominal significant allelic association with obesity in women and one in men. The two <it>ESR2 </it>SNPs associated with obesity with nominal P value < 0.01 were genotyped in a second cohort where no association with obesity was observed. There was an inverse correlation between <it>ESR1 </it>mRNA levels in abdominal subcutaneous (sc) adipose tissue and basal lipolysis, as well as responsiveness to adrenoceptor agonists independent of age and BMI (P value 0.009–0.045). <it>ESR1 </it>rs532010 was associated with lipolytic sensitivity to noradrenaline (nominal P value 0.012), and <it>ESR1 </it>rs1884051 with responsiveness to the non-selective beta-adrenoceptor agonist isoprenaline (nominal P value 0.05). These associations became non-significant after Bonferroni correction.</p> <p>Conclusion</p> <p><it>ESR1 </it>gene alleles are unlikely to be a major cause of obesity in women. A minor importance of <it>ESR2 </it>on severe obesity cannot be excluded. The inverse correlation between <it>ESR1 </it>mRNA levels and lipolytic responsiveness to adrenoceptor agonists implies that low adipose tissue <it>ESR1 </it>levels attenuate catecholamine resistance in sc fat cells of obese women hereby contributing to loss of sc and gain of visceral fat. There is no evidence for a genetic impact of <it>ESR1 </it>on lipolysis or lipogenesis.</p

    Gene Expression in Peripheral Blood Leukocytes in Monozygotic Twins Discordant for Chronic Fatigue: No Evidence of a Biomarker

    Get PDF
    Background: Chronic fatiguing illness remains a poorly understood syndrome of unknown pathogenesis. We attempted to identify biomarkers for chronic fatiguing illness using microarrays to query the transcriptome in peripheral blood leukocytes. Methods: Cases were 44 individuals who were clinically evaluated and found to meet standard international criteria for chronic fatigue syndrome or idiopathic chronic fatigue, and controls were their monozygotic co-twins who were clinically evaluated and never had even one month of impairing fatigue. Biological sampling conditions were standardized and RNA stabilizing media were used. These methodological features provide rigorous control for bias resulting from case-control mismatched ancestry and experimental error. Individual gene expression profiles were assessed using Affymetrix Human Genome U133 Plus 2.0 arrays. Findings: There were no significant differences in gene expression for any transcript. Conclusions: Contrary to our expectations, we were unable to identify a biomarker for chronic fatiguing illness in the transcriptome of peripheral blood leukocytes suggesting that positive findings in prior studies may have resulted fro

    Gene Expression Profiling and Chromatin Immunoprecipitation Identify DBN1, SETMAR and HIG2 as Direct Targets of SOX11 in Mantle Cell Lymphoma

    Get PDF
    The SRY (sex determining region Y)-box 11 (SOX11) gene, located on chromosome 2p25, encodes for a transcription factor that is involved in tissue remodeling during embryogenesis and is crucial for neurogenesis. The role for SOX11 in hematopoiesis has not yet been defined. Two genes under direct control of SOX11 are the class- III β-tubulin gene (TUBB3) in neural cells and the transcription factor TEA domain family member 2 (TEAD2) in neural and mesenchymal progenitor cells. Normal, mature lymphocytes lack SOX11 but express SOX4, another member of the same group of SOX transcription factors. We and others recently identified SOX11 as aberrantly expressed in mantle cell lymphoma (MCL). Since SOX11 is variably expressed in MCL it may not be essential for tumorigenesis, but may carry prognostic information. Currently, no specific functional effects have been linked to SOX11 expression in MCL and it is not known which genes are under influence of SOX11 in lymphoma. In this study we found variable expression of SOX11, SOX4 and SOX12 mRNA in mantle cell lymphoma cell lines. Downregulation of SOX11 expression by siRNA verified that SOX11 controlled the expression of the gene TUBB3 in the MCL cell line Granta 519. Furthermore we identified, by global gene expression analysis, 26 new target genes influenced by siRNA SOX11 downmodulation. Among these genes, DBN1, SETMAR and HIG2 were found to be significantly correlated to SOX11 expression in two cohorts of primary mantle cell lymphomas. Chromatin immunoprecipitation (ChIP) analysis showed that these genes are direct targets of the SOX11 protein. In spite of almost complete downregulation of the SOX11 protein no significant effects on Granta 519 cell proliferation or survival in short term in vitro experiments was found. In summary we have identified a number of genes influenced by SOX11 expression in MCL cell lines and primary MCL. Among these genes, DBN1, SETMAR and HIG2 are direct transcriptional targets of the SOX11 protein

    Fatty Acids Derived from Royal Jelly Are Modulators of Estrogen Receptor Functions

    Get PDF
    Royal jelly (RJ) excreted by honeybees and used as a nutritional and medicinal agent has estrogen-like effects, yet the compounds mediating these effects remain unidentified. The possible effects of three RJ fatty acids (FAs) (10-hydroxy-2-decenoic-10H2DA, 3,10-dihydroxydecanoic-3,10DDA, sebacic acid-SA) on estrogen signaling was investigated in various cellular systems. In MCF-7 cells, FAs, in absence of estradiol (E2), modulated the estrogen receptor (ER) recruitment to the pS2 promoter and pS2 mRNA levels via only ERβ but not ERα, while in presence of E2 FAs modulated both ERβ and ERα. Moreover, in presence of FAs, the E2-induced recruitment of the EAB1 co-activator peptide to ERα is masked and the E2-induced estrogen response element (ERE)-mediated transactivation is inhibited. In HeLa cells, in absence of E2, FAs inhibited the ERE-mediated transactivation by ERβ but not ERα, while in presence of E2, FAs inhibited ERE-activity by both ERβ and ERα. Molecular modeling revealed favorable binding of FAs to ERα at the co-activator-binding site, while binding assays showed that FAs did not bind to the ligand-binding pocket of ERα or ERβ. In KS483 osteoblasts, FAs, like E2, induced mineralization via an ER-dependent way. Our data propose a possible molecular mechanism for the estrogenic activities of RJ's components which, although structurally entirely different from E2, mediate estrogen signaling, at least in part, by modulating the recruitment of ERα, ERβ and co-activators to target genes

    Estrogen Receptor Subtypes Elicit a Distinct Gene Expression Profile of Endothelial-Derived Factors Implicated in Atherosclerotic Plaque Vulnerability

    Get PDF
    In the presence of established atherosclerosis, estrogens are potentially harmful. MMP-2 and MMP-9, their inhibitors (TIMP-2 and TIMP-1), RANK, RANKL, OPG, MCP-1, lysyl oxidase (LOX), PDGF-β, and ADAMTS-4 play critical roles in plaque instability/rupture. We aimed to investigate (i) the effect of estradiol on the expression of the abovementioned molecules in endothelial cells, (ii) which type(s) of estrogen receptors mediate these effects, and (iii) the role of p21 in the estrogen-mediated regulation of the aforementioned factors. Human aortic endothelial cells (HAECs) were cultured with estradiol in the presence or absence of TNF-α. The expression of the aforementioned molecules was assessed by qRT-PCR and ELISA. Zymography was also performed. The experiments were repeated in either ERα- or ERβ-transfected HAECs and after silencing p21. HAECs expressed only the GPR-30 estrogen receptor. Estradiol, at low concentrations, decreased MMP-2 activity by 15-fold, increased LOX expression by 2-fold via GPR-30, and reduced MCP-1 expression by 3.5-fold via ERβ. The overexpression of ERα increased MCP-1 mRNA expression by 2.5-fold. In a low-grade inflammation state, lower concentrations of estradiol induced the mRNA expression of MCP-1 (3.4-fold) and MMP-9 (7.5-fold) and increased the activity of MMP-2 (1.7-fold) via GPR-30. Moreover, p21 silencing resulted in equivocal effects on the expression of the abovementioned molecules. Estradiol induced different effects regarding atherogenic plaque instability through different ERs. The balance of the expression of the various ER subtypes may play an important role in the paradoxical characterization of estrogens as both beneficial and harmful

    Cardiovascular roles of estrogen receptors: insights gained from knockout models

    Get PDF
    The effects of estrogen are mediated through two functionally distinct receptors, estrogen receptor α (ER- α ), and estrogen receptor β (ER- β ), both of which are expressed in the cardiovascular system. The etiology of cardiovascular disease is believed to result in part from the loss of endogenous estrogen, indicating that estrogen and its receptors may play important roles in the prevention of cardiovascular disease in women
    • …
    corecore