6 research outputs found

    Webinar: Data-Driven Mobility Strategies for Multimodal Transportation

    Get PDF
    Multimodal transportation systems (e.g., walking, cycling, automobile, public transit, etc.) are effective in increasing people’s travel flexibility, reducing congestion, and improving safety. Therefore, it is critical to understand what factors would affect people’s mode choices. With advanced technology, such as connected and automated vehicles, cities are now facing a transition from traditional urban planning to developing smart cities. To support multimodal transportation management, this study serves as a bridge to connect speed management strategies of conventional corridors to connected vehicle corridors. The study consists of three main components. In the first component, the impact of speed management strategies along traditional corridors was evaluated. In the second component, the impacts of the specific speed management strategies, signal retiming and coordination, on transit signal priority (TSP) was studied. Finally, in the third component, the feasibility of using controller event-based traffic data for estimating multimodal signal performance measures was investigated. The research outcomes of this study will help decision-makers understand the data and infrastructure needs in supporting future multimodal planning, operation, and safety tasks.https://pdxscholar.library.pdx.edu/trec_webinar/1063/thumbnail.jp

    Data-Driven Mobility Strategies for Multimodal Transportation

    Get PDF
    Multimodal transportation systems (e.g., walking, cycling, automobile, public transit, etc.) are effective in increasing people’s travel flexibility, reducing congestion, and improving safety. Therefore, it is critical to understand what factors would affect people’s mode choices. With advanced technology, such as connected and automated vehicles, cities are now facing a transition from traditional urban planning to developing smart cities. To support multimodal transportation management, this study will serve as a bridge to connect speed management strategies of conventional corridors to connected vehicle corridors. This study consists of three main components. In the first component, the impact of speed management strategies along traditional corridors was evaluated. To do so, a study corridor in Pima County, AZ, was selected, and using the data collected from smart sensors, the mobility and safety impact of a specific speed management strategy was explored. The results of this component showed a positive impact of SFS on both mobility and safety along traditional corridors. In the second component, the impacts of the specific speed management strategies, signal retiming and coordination, on transit signal priority (TSP) was studied. A connected corridor in Salt Lake City, UT, was selected as the study corridor. The results of this component showed TSP has great potential to reduce bus delays at intersections, improve transit operational reliability, and consequently increase transit ridership with improved service. Finally, in the third component, the feasibility of using controller event-based traffic data for estimating multimodal signal performance measures was investigated. Four intersections on Ina Rd., Pima County were selected as the study locations. The results of this component showed the proposed delay estimation method was able to capture and track the actual delay fluctuation during the day with an average of 10% of mean absolute error. The research outcomes of this study will help decision-makers understand the data and infrastructure needs in supporting future multimodal planning, operation, and safety tasks

    Estimating Pedestrian Delay at Signalized Intersections Using High-Resolution Event-Based Data: a Finite Mixture Modeling Method

    No full text
    It has been widely shown that pedestrians’ level of frustration grows with the increase of pedestrian delay, and may cause pedestrians to violate the signals. However, for agencies seeking to use multimodal signal performances for signal operations, the pedestrian delay is not always readily available. To tackle this issue, this study proposed a finite mixture modeling method to estimate pedestrian delay using high-resolution event-based data collected from the smart sensors. The proposed method was used to estimate pedestrian delay at four signalized intersections on a major arterial corridor in Pima County, Arizona. The results showed the proposed method was able to capture and track the actual pedestrian delay fluctuations during the day at all the study intersections with average errors of 10 s and 13 s for mean-absolute-error and root-mean-square-error, respectively. In addition, the proposed model was compared with three conventional methods (HCM 2010, Virkler, Dunn) and the comparison results showed that the proposed method outperforms all the other methods in terms of both mean-absolute-error and root-mean-square-error. Furthermore, it was found that the proposed method is transferable and can be used as a network-wide delay estimation model for intersections with similar traffic patterns. The application of the proposed method could provide agencies with a more reliable, robust, and yet accurate approach for estimating pedestrian delay at signalized intersections where the pedestrian data are not readily available. In addition, it will allow system operators to quantitatively assess existing delays and enact changes to incorporate the better serve pedestrian needs

    Handling Imbalanced Data for Real-Time Crash Prediction: Application of Boosting and Sampling Techniques

    No full text
    With a growing number of intelligent transportation system sensors and the networkwide deployment of those across the nation’s roadway facilities, current research and practices should concentrate on more proactive safety strategies. In recent years, real-time traffic data collected from ITS sensors have been utilized to develop crash prediction models. Real-time crash prediction models can be used to identify hazardous traffic conditions that might cause a crash. This study aims to examine how employing data mining techniques that account for imbalanced data could improve the predictive capability of real-time crash prediction models. The term imbalanced data refers to a condition where the number of observations in each class is not equally distributed among the data set (noncrash cases outnumber crash cases). To decrease the within-class variation of imbalanced data, the data were split into two traffic-state data sets: free-flow speed (FFS) and congestion. Three models, including logistic regression as the baseline, random forest (RF) with random undersampling, and Adaptive Boosting (AdaBoost), were estimated with each data set. The results were compared with the models that were estimated using the complete set of data. Model comparisons indicated that all three models achieved significantly better predictive results with the congested and FFS data sets as opposed to the data set containing all crashes and that, while in some cases the results of the undersampled RF model were slightly better than those of AdaBoost, both models outperformed the logistic regression model. The results of this study demonstrated that using models to deal with imbalanced data and lowering the variation of imbalanced data could substantially improve crash prediction accuracy. The findings could help traffic agencies to practically implement and deploy crash prediction models for real-time applications and develop crash prevention strategies accordingly
    corecore