28 research outputs found

    Serotonin Transporter Polymorphism Modulates N-Back Task Performance and fMRI BOLD Signal Intensity in Healthy Women

    Get PDF
    CONTEXT: Exploring intermediate phenotypes within the human brain's functional and structural circuitry is a promising approach to explain the relative contributions of genetics, complex behaviors and neural mechanisms in the development of major depressive disorder (MDD). The polymorphic region 5-HTTLPR in the serotonin transporter gene (SLC6A4) has been shown to modulate MDD risk, but the neural underpinnings are incompletely understood. OBJECTIVE: 37 right handed healthy women between 21 and 61 years of age were invited to participate in an fMRI modified n-back study. The functional polymorphism 5-HTTLPR located in the promoter region of the SLC6A4 gene was genotyped using polymerase chain reaction (PCR). RESULTS: Short 5-HTTLPR allele carriers showed more blood-oxygen-level-dependent (BOLD) bilateral prefrontal cortex activation in the right [F(2, 30) = 4.8, η(2) = .25, p = .026] and left [F(2, 30) = 4.1, η(2) = .22, p = .015] inferior frontal gyrus pars triangularis with increasing n-back task difficulty relative to long 5-HTTLPR allele carriers. Short 5-HTTLPR allele carriers had inferior task performance on the most difficult n-back condition [F(2, 30) = 4.9, η(2) = .26, p = .014]. CONCLUSIONS: This activation pattern found in healthy at risk individuals resembles an activation pattern that is typically found in patients suffering from acute MDD. Altered function in these areas may reflect intermediate phenotypes and may help explain the increased risk of depression in short 5-HTTLPR allele carriers

    The human ABC transporter pseudogene family: Evidence for transcription and gene-pseudogene interference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudogenes are an integral component of the human genome. Little attention, however, has so far been paid to the phenomenon that some pseudogenes are transcriptionally active. Recently, we demonstrated that the human ortholog of the rodent testis-specific ATP-binding cassette (ABC) transporter Abca17 is a ubiquitously transcribed pseudogene (<it>ABCA17P</it>). The aim of the present study was to establish a complete inventory of all ABC transporter pseudogenes in the human genome and to identify transcriptionally active ABC transporter pseudogenes. Moreover, we tested the hypothesis that a regulatory interdependency exists between ABC transporter pseudogenes and their parental protein coding equivalents.</p> <p>Results</p> <p>Systematic bioinformatic analysis revealed the existence of 22 ABC transporter pseudogenes within the human genome. We identified two clusters on chromosomes 15 and 16, respectively, which harbor almost half of all pseudogenes (n = 10). Available information from EST and mRNA databases and RT-PCR expression profiling indicate that a large portion of the ABC transporter pseudogenes (45%, n = 10) are transcriptionally active and some of them are expressed as alternative splice variants. We demonstrate that both pseudogenes of the pseudoxanthoma elasticum gene <it>ABCC6</it>, <it>ABCC6P1 </it>and <it>ABCC6P2</it>, are transcribed. <it>ABCC6P1 </it>and <it>ABCC6 </it>possess near-identical promoter sequences and their tissue-specific expression profiles are strikingly similar raising the possibility that they form a gene-pseudogene dual transcription unit. Intriguingly, targeted knockdown of the transcribed pseudogene <it>ABCC6P1 </it>resulted in a significant reduction of <it>ABCC6 </it>mRNA expression levels.</p> <p>Conclusion</p> <p>The human genome contains a surprisingly small number of ABC transporter pseudogenes relative to other known gene families. They are unevenly distributed across the chromosomes. Importantly, a significant portion of the ABC transporter pseudogenes is transcriptionally active. The downregulation of <it>ABCC6 </it>mRNA levels by targeted suppression of the expression of its pseudogene <it>ABCC6P1 </it>provides evidence, for the first time, for a regulatory interdependence of a transcribed pseudogene and its protein coding counterpart in the human genome.</p

    POLD2 and KSP37 (FGFBP2) Correlate Strongly with Histology, Stage and Outcome in Ovarian Carcinomas

    Get PDF
    BACKGROUND:Epithelial ovarian cancer (EOC) constitutes more than 90% of ovarian cancers and is associated with high mortality. EOC comprises a heterogeneous group of tumours, and the causes and molecular pathology are essentially unknown. Improved insight into the molecular characteristics of the different subgroups of EOC is urgently needed, and should eventually lead to earlier diagnosis as well as more individualized and effective treatments. Previously, we reported a limited number of mRNAs strongly upregulated in human osteosarcomas and other malignancies, and six were selected to be tested for a possible association with three subgroups of ovarian carcinomas and clinical parameters. METHODOLOGY/PRINCIPAL FINDINGS:The six selected mRNAs were quantified by RT-qPCR in biopsies from eleven poorly differentiated serous carcinomas (PDSC, stage III-IV), twelve moderately differentiated serous carcinomas (MDSC, stage III-IV) and eight clear cell carcinomas (CCC, stage I-IV) of the ovary. Superficial scrapings from six normal ovaries (SNO), as well as biopsies from three normal ovaries (BNO) and three benign ovarian cysts (BBOC) were analyzed for comparison. The gene expression level was related to the histological and clinical parameters of human ovarian carcinoma samples. One of the mRNAs, DNA polymerase delta 2 small subunit (POLD2), was increased in average 2.5- to almost 20-fold in MDSC and PDSC, respectively, paralleling the degree of dedifferentiation and concordant with a poor prognosis. Except for POLD2, the serous carcinomas showed a similar transcription profile, being clearly different from CCC. Another mRNA, Killer-specific secretory protein of 37 kDa (KSP37) showed six- to eight-fold higher levels in CCC stage I compared with the more advanced staged carcinomas, and correlated positively with an improved clinical outcome. CONCLUSIONS/SIGNIFICANCE:We have identified two biomarkers which are markedly upregulated in two subgroups of ovarian carcinomas and are also associated with stage and outcome. The results suggest that POLD2 and KSP37 might be potential prognostic biomarkers

    Warfarin dose and INR related to genotypes of CYP2C9 and VKORC1 in patients with myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Warfarin treatment has a narrow therapeutic range, requiring meticulous monitoring and dosage titration. Individual dosage requirement has recently partly been explained by genetic variation of the warfarin metabolizing enzyme CYP2C9 and the Vitamin K-activating enzyme VKORC1. In the WARIS-II study, comparing three different antithrombotic regimens after myocardial infarction, warfarin treatment reduced thrombotic events, but was associated with more frequent bleeding than use of acetylsalisylic acid (ASA) alone.</p> <p>Aims</p> <p>The primary aim of the present study was to investigate the relation between genotypes of CYP2C9 and VKORC1 and warfarin maintenance dose in myocardial infarction. The secondary aim was to relate the genotypes to international normalized ratio (INR).</p> <p>Methods</p> <p>Genotyping was performed in 212 myocardial infarction patients from the WARIS-II study by robotic isolation of DNA from EDTA whole blood (MagNa Pure LC) before PCR amplification (LightCycler) and melting point analysis.</p> <p>Results</p> <p>The 420 C>T substitution of CYP2C9*2, the 1075 A>C substitution of CYP2C9*3 and the 1173 C>T substitution of VKORC1 had minor allele frequencies of, 11.3%, 5.7% and 36.6% respectively. Warfarin weekly dose varied between 17 mg and 74 mg among the patients. INR did not vary between genotypes. Warfarin dosage requirement was significantly associated with CYP2C9 and VKORC1 genotypes, treatment group and age. The VKORC1 genotype contributed 24.5% to the interindividual variation in warfarin dosage, whereas the combined CYP2C9 genotypes were only responsible for 7.2% of the dose variation.</p> <p>Conclusion</p> <p>CYP2C9 and VKORC1 genotype frequencies in myocardial infarction patients appear similar to other patient groups and have similar impact on warfarin maintenance dose.</p

    Distinct microRNA and protein profiles of extracellular vesicles secreted from myotubes from morbidly obese donors with type 2 diabetes in response to electrical pulse stimulation

    Get PDF
    Lifestyle disorders like obesity, type 2 diabetes (T2D), and cardiovascular diseases can be prevented and treated by regular physical activity. During exercise, skeletal muscles release signaling factors that communicate with other organs and mediate beneficial effects of exercise. These factors include myokines, metabolites, and extracellular vesicles (EVs). In the present study, we have examined how electrical pulse stimulation (EPS) of myotubes, a model of exercise, affects the cargo of released EVs. Chronic low frequency EPS was applied for 24 h to human myotubes isolated and differentiated from biopsy samples from six morbidly obese females with T2D, and EVs, both exosomes and microvesicles (MV), were isolated from cell media 24 h thereafter. Size and concentration of EV subtypes were characterized by nanoparticle tracking analysis, surface markers were examined by flow cytometry and Western blotting, and morphology was confirmed by transmission electron microscopy. Protein content was assessed by high-resolution proteomic analysis (LC-MS/MS), non-coding RNA was quantified by Affymetrix microarray, and selected microRNAs (miRs) validated by real time RT-qPCR. The size and concentration of exosomes and MV were unaffected by EPS. Of the 400 miRs identified in the EVs, EPS significantly changed the level of 15 exosome miRs, of which miR-1233-5p showed the highest fold change. The miR pattern of MV was unaffected by EPS. Totally, about 1000 proteins were identified in exosomes and 2000 in MV. EPS changed the content of 73 proteins in exosomes, 97 in MVs, and of these four were changed in both exosomes and MV (GANAB, HSPA9, CNDP2, and ATP5B). By matching the EPS-changed miRs and proteins in exosomes, 31 targets were identified, and among these several promising signaling factors. Of particular interest were CNDP2, an enzyme that generates the appetite regulatory metabolite Lac-Phe, and miR-4433b-3p, which targets CNDP2. Several of the regulated miRs, such as miR-92b-5p, miR-320b, and miR-1233-5p might also mediate interesting signaling functions. In conclusion, we have used a combined transcriptome-proteome approach to describe how EPS affected the cargo of EVs derived from myotubes from morbidly obese patients with T2D, and revealed several new factors, both miRs and proteins, that might act as exercise factors

    Genetic variation in candidate genes and patellar tendinopathy: Prospective cohort study of 126 elite volleyball players

    No full text
    Variation in genes coding for structural proteins may represent risk factors for developing tendinopathy among athletes. The purpose of this prospective cohort study of elite volleyball students was to investigate whether specific single nucleotide variants (SNVs) in selected candidate genes, known to be associated with Achilles tendinopathy, were associated with the risk for developing patellar tendinopathy (jumper′s knee). Of 126 Caucasian athletes (64 females and 62 males), 33 cases (athletes developing jumper′s knee) were compared to 93 healthy controls. Six SNVs, distributed in the candidate genes COL1A1, COL5A1, MMP3, and GDF3, were genotyped. Baseline characteristics, genotypes, and minor allele frequencies (MAF) were compared between groups. Neither genotype nor minor allele frequencies differed significantly between the jumper′s knee group and the healthy controls. However, the low‐frequency homozygous T/T genotype of the COL1A1 gene (rs1800012) was absent in the jumper′s knee group (P = .075). Separating the two study groups by gender suggested that there may be a female‐specific genotype pattern, although the sample was too small for statistical calculations. In this study, although limited by sample size, we could not detect any clear relationship between six selected SNVs located in candidate genes and the risk for the development of jumper′s knee in elite volleyball students

    Use of Robotized DNA Isolation and Real-Time PCR To Quantify and Identify Close Correlation between Levels of Neisseria meningitidis DNA and Lipopolysaccharides in Plasma and Cerebrospinal Fluid from Patients with Systemic Meningococcal Disease

    No full text
    The present study, using robotized DNA isolation and quantitative PCR based on the Neisseria meningitidis-specific capsular transport A gene, demonstrates the ease, rapidity, specificity, and sensitivity of quantifying neisserial DNA in plasma (n = 65) and cerebrospinal fluid (CSF) (n = 12) from patients with systemic meningococcal disease. We found a close correlation between the levels of neisserial DNA and lipopolysaccharides in plasma (r = 0.905) and in CSF (r = 0.964). The median concentration of neisserial DNA in plasma in 23 patients with persistent shock was 2 × 10(7) copies/ml, versus <10(3) copies/ml in 42 nonshock patients. Furthermore, quantitative PCR made possible estimates of the total number of meningococci in plasma, as opposed to conventional blood cultures, suggesting about 1,000 dead meningococci for every viable bacterium. Finally, with logistic regression analyses, neisserial DNA may predict a patient's disease severity and outcome at hospital admission. The number of meningococci in plasma and CSF appears to be the main determinant of the lipopolysaccharide levels, clinical presentation, and outcome
    corecore