34 research outputs found

    Nanotechnology for angiogenesis: Opportunities and challenges

    Get PDF
    Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses. This journal i

    Biomedical radioactive glasses for brachytherapy

    Get PDF
    The fight against cancer is an old challenge for mankind. Apart from surgery and chemo-therapy, which are the most common treatments, use of radiation represents a promising, less inva-sive strategy that can be performed both from the outside or inside the body. The latter approach, also known as brachytherapy, relies on the use of implantable beta-emitting seeds or microspheres for killing cancer cells. A set of radioactive glasses have been developed for this purpose but their clinical use is still mainly limited to liver cancer. This review paper provides a picture of the bio-medical glasses developed and experimented for brachytherapy so far, focusing the discussion on the production methods and current limitations of the available options to their diffusion in clinical practice. Highly-durable neutron-activatable glasses in the yttria-alumina-silica oxide system are typically preferred in order to avoid the potentially-dangerous release of radioisotopes, while the compositional design of degradable glass systems suitable for use in radiotherapy still remains a challenge and would deserve further investigation in the near future

    Fabrication and characterization of Ag- and Ga-doped mesoporous glass-coated scaffolds based on natural marine sponges with improved mechanical properties

    Get PDF
    Natural marine sponges were used as sacrificial template for the fabrication of bioactive glassbased scaffolds. After sintering at 1050 ºC, the resulting samples were additionally coated with a sol silicate solution containing biologically active ions (Ag and Ga), well-known for their antibacterial properties in comparison with standard scaffolds made by PU foam templates. The produced scaffolds were characterized by superior mechanical properties (maximum compressive strength of 4 MPa) and total porosity of ~80%. Direct cell culture tests performed on the uncoated and coated samples showed positive results in terms of adhesion, proliferation, and differentiation of MC3T3-E1 cells. Moreover, vascular endothelial growth factor (VEGF) secretion from cells in contact with scaffold dissolution products was measured after 7 and 10 days of incubation, showing promising angiogenic results for bone tissue engineering applications. The antibacterial potential of the produced samples was assessed by performing agar diffusion tests against both Gram-positive and Gram-negative bacteria.EU Horizon 2020 project COACH 64255

    Zinc- and Copper-Doped Mesoporous Borate Bioactive Glasses: Promising Additives for Potential Use in Skin Wound Healing Applications

    Get PDF
    In this study, zinc (Zn)- and copper (Cu)-doped 13-93B3 borate mesoporous bioactive glasses (MBGs) were successfully synthesized using nitrate precursors in the presence of Pluronic P123. We benefited from computational approaches for predicting and confirming the experimental findings. The changes in the dynamic surface tension (SFT) of simulated body fluid (SBF) were investigated using the Du Noüy ring method to shed light on the mineralization process of hydroxyapatite (HAp) on the glass surface. The obtained MBGs were in a glassy state before incubation in SBF. The formation of an apatite-like layer on the SBF-incubated borate glasses was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The incorporation of Zn and Cu into the basic composition of 13-93B3 glass led to changes in the glass transition temperature (Tg) (773 to 556 °C), particle size (373 to 64 nm), zeta potential (−12 to −26 mV), and specific surface area (SBET) (54 to 123 m2/g). Based on the K-means algorithm and chi-square automatic interaction detection (CHAID) tree, we found that the SFT of SBF is an important factor for the prediction and confirmation of the HAp mineralization process on the glasses. Furthermore, we proposed a simple calculation, based on SFT variation, to quantify the bioactivity of MBGs. The doped and dopant-free borate MBGs could enhance the proliferation of mouse fibroblast L929 cells at a concentration of 0.5 mg/mL. These glasses also induced very low hemolysis (<5%), confirming good compatibility with red blood cells. The results of the antibacterial test revealed that all the samples could significantly decrease the viability of Pseudomonas aeruginosa. In summary, we showed that Cu-/Zn-doped borate MBGs can be fabricated using a cost-effective method and also show promise for wound healing/skin tissue engineering applications, as especially supported by the cell test with fibroblasts, good compatibility with blood, and antibacterial properties

    Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery

    Get PDF
    Background Bone grafting has been considered the gold standard for hard tissue reconstructive surgery and is widely used for large mandibular defect reconstruction. However, the midface encompasses delicate structures that are surrounded by a complex bone architecture, which makes bone grafting using traditional methods very challenging. Three-dimensional (3D) bioprinting is a developing technology that is derived from the evolution of additive manufacturing. It enables precise development of a scaffold from different available biomaterials that mimic the shape, size, and dimension of a defect without relying only on the surgeon’s skills and capabilities, and subsequently, may enhance surgical outcomes and, in turn, patient satisfaction and quality of life. Review This review summarizes different biomaterial classes that can be used in 3D bioprinters as bioinks to fabricate bone scaffolds, including polymers, bioceramics, and composites. It also describes the advantages and limitations of the three currently used 3D bioprinting technologies: inkjet bioprinting, micro-extrusion, and laser-assisted bioprinting. Conclusions Although 3D bioprinting technology is still in its infancy and requires further development and optimization both in biomaterials and techniques, it offers great promise and potential for facial reconstruction with improved outcome

    Folic acid supplementation in postmenopausal women with hot flushes: phase III randomised double-blind placebo-controlled trial

    Get PDF
    Objective To assess whether folic acid supplementation ameliorates hot flushes. Design Double-blind, placebo-controlled randomised trial. Setting Nine hospitals in England. Population Postmenopausal women experiencing ≥50 hot flushes weekly. Methods Women (n = 164) were randomly assigned in a 1:1 ratio to receive folic acid 5 mg tablet or placebo daily for 12 weeks. Participants recorded frequency and severity of hot flushes in a Sloan Diary daily and completed Greene Climacteric and Utian Quality of Life (UQoL) Scales at 4-week intervals. Main outcome measures The change in daily Hot Flush Score at week 12 from randomisation based on Sloan Diary Composite Score B calculation. Results Data of 143 (87%) women were available for the primary outcome. The mean change (SD) in Hot Flush Score at week 12 was −6.98 (10.30) and −4.57 (9.46) for folic acid and placebo group, respectively. The difference between groups in the mean change was −2.41 (95% CI −5.68 to 0.87) (P = 0.149) and in the adjusted mean change −2.61 (95% CI −5.72 to 0.49) (P = 0.098). Analysis of secondary outcomes indicated an increased benefit in the folic acid group regarding changes in total and emotional UQoL scores at week 8 when compared with placebo. The difference in the mean change from baseline was 5.22 (95% CI 1.16–9.28) and 1.88 (95% CI 0.23–3.52) for total and emotional score, respectively. Conclusions The study was not able to demonstrate that folic acid had a statistically significant greater benefit in reducing Hot Flush Score over 12 weeks in postmenopausal women when compared with placebo. Tweetable abstract Folic acid may ameliorate hot flushes in postmenopausal women but confirmation is required from a larger study

    “Hard” ceramics for “Soft” tissue engineering: Paradox or opportunity?

    Get PDF
    Tissue engineering provides great possibilities to manage tissue damages and injuries in modern medicine. The involvement of hard biocompatible materials in tissue engineering-based therapies for the healing of soft tissue defects has impressively increased over the last few years: in this regard, different types of bioceramics were developed, examined and applied either alone or in combination with polymers to produce composites. Bioactive glasses, carbon nanostructures, and hydroxyapatite nanoparticles are among the most widely-proposed hard materials for treating a broad range of soft tissue damages, from acute and chronic skin wounds to complex injuries of nervous and cardiopulmonary systems. Although being originally developed for use in contact with bone, these substances were also shown to offer excellent key features for repair and regeneration of wounds and “delicate” structures of the body, including improved cell proliferation and differentiation, enhanced angiogenesis, and antibacterial/anti-inflammatory activities. Furthermore, when embedded in a soft matrix, these hard materials can improve the mechanical properties of the implant. They could be applied in various forms and formulations such as fine powders, granules, and micro- or nanofibers. There are some pre-clinical trials in which bioceramics are being utilized for skin wounds; however, some crucial questions should still be addressed before the extensive and safe use of bioceramics in soft tissue healing. For example, defining optimal formulations, dosages, and administration routes remain to be fixed and summarized as standard guidelines in the clinic. This review paper aims at providing a comprehensive picture of the use and potential of bioceramics in treatment, reconstruction, and preservation of soft tissues (skin, cardiovascular and pulmonary systems, peripheral nervous system, gastrointestinal tract, skeletal muscles, and ophthalmic tissues) and critically discusses their pros and cons (e.g., the risk of calcification and ectopic bone formation as well as the local and systemic toxicity) in this regard. Statement of Significance: Soft tissues form a big part of the human body and play vital roles in maintaining both structure and function of various organs; however, optimal repair and regeneration of injured soft tissues (e.g., skin, peripheral nerve) still remain a grand challenge in biomedicine. Although polymers were extensively applied to restore the lost or injured soft tissues, the use of bioceramics has the potential to provides new opportunities which are still partially unexplored or at the very beginning. This reviews summarizes the state of the art of bioceramics in this field, highlighting the latest evolutions and the new horizons that can be opened by their use in the context of soft tissue engineering. Existing results and future challenges are discussed in order to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers of the biomaterials community
    corecore