112 research outputs found

    Shrinkage of Nepal's second largest lake (Phewa Tal) due to watershed degradation and increased sediment influx

    Get PDF
    Phewa Lake is an environmental and socio-economic asset to Nepal and the city of Pokhara. However, the lake area has decreased in recent decades due to sediment influx. The rate of this decline and the areal evolution of Phewa Lake due to artificial damming and sedimentation is disputed in the literature due to the lack of a historical time series. In this paper, we present an analysis of the lake's evolution from 1926 to 2018 and model the 50-year trajectory of shrinkage. The area of Phewa Lake expanded from 2.44 ± 1.02 km2 in 1926 to a maximum of 4.61 ± 0.07 km2 in 1961. However, the lake area change was poorly constrained prior to a 1957-1958 map. The contemporary lake area was 4.02 ± 0.07 km2 in April 2018, and expands seasonally by ~0.18 km2 due to the summer monsoon. We found no evidence to support a lake area of 10 km2 in 1956-1957, despite frequent reporting of this value in the literature. Based on the rate of areal decline and sediment influx, we estimate the lake will lose 80% of its storage capacity in the next 110-347 years, which will affect recreational use, agricultural irrigation, fishing, and a one-megawatt hydroelectric power facility. Mitigation of lake shrinkage will require addressing landslide activity and sediment transport in the watershed, as well as urban expansion along the shores

    Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017

    Get PDF
    Atmospheric warming is intensifying glacier melting and glacial-lake development in High Mountain Asia (HMA), and this could increase glacial-lake outburst flood (GLOF) hazards and impact water resources and hydroelectric-power management. There is therefore a pressing need to obtain comprehensive knowledge of the distribution and area of glacial lakes and also to quantify the variability in their sizes and types at high resolution in HMA. In this work, we developed an HMA glacial-lake inventory (Hi-MAG) database to characterize the annual coverage of glacial lakes from 2008 to 2017 at 30 m resolution using Landsat satellite imagery. Our data show that glacial lakes exhibited a total area increase of 90.14 km2 in the period 2008–2017, a +6.90 % change relative to 2008 (1305.59±213.99 km2). The annual increases in the number and area of lakes were 306 and 12 km2, respectively, and the greatest increase in the number of lakes occurred at 5400 m elevation, which increased by 249. Proglacial-lake-dominated areas, such as the Nyainqêntanglha and central Himalaya, where more than half of the glacial-lake area (summed over a 1∘ × 1∘ grid) consisted of proglacial lakes, showed obvious lake-area expansion. Conversely, some regions of eastern Tibetan mountains and Hengduan Shan, where unconnected glacial lakes occupied over half of the total lake area in each grid, exhibited stability or a slight reduction in lake area. Our results demonstrate that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Proglacial lakes in the Himalaya ranges alone accounted for 36.27 % (32.70 km2) of the total area increase. Regional geographic variability in debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supraglacial- and proglacial-lake area across HMA. The Hi-MAG database is available at https://doi.org/10.5281/zenodo.4275164 (Chen et al., 2020), and it can be used for studies of the complex interactions between glaciers, climate and glacial lakes, studies of GLOFs, and water resources

    Topographic Control on Ground Motions and Landslides From the 2015 Gorkha Earthquake

    Get PDF
    Landslides triggered by earthquake shaking pose a significant hazard in active mountain regions. Steep topography promotes gravitational instabilities and can amplify the seismic wavefield; however, the relationship between topographic amplification and landsliding is poorly understood. Here, we use numerical methods to investigate the link between low-frequency ground shaking, topographic amplification, and the landslide distribution from the 2015 Gorkha, Nepal earthquake. Results show that the largest landslides initiated where the highest topographic amplification, highest elevations, and steepest slopes converged, typically in glacially-sculpted terrain, with additional controls of rock strength and absolute ground motions. Additionally, the initiation of the largest and most fatal landslide was likely influenced by amplification throughout the rupture due the orientation of the ridge with respect to the propagating wavefield. These results indicate that topographic amplification is one of the key factors for understanding where large and potentially devastating landslides are likely to occur during future major earthquakes

    Climate change and the global pattern of moraine-dammed glacial lake outburst floods

    Get PDF
    This is the author accepted manuscript. The final version is available from EGU via the DOI in this recordThe published version, as published in The Cryosphere, is in ORE: http://hdl.handle.net/10871/32433Despite recent research identifying a clear anthropogenic impact on glacier recession, the effect of recent climate change on glacier-related hazards is at present unclear. Here we present the first global spatio-temporal assessment of glacial lake outburst floods (GLOFs) focusing explicitly on lake drainage following moraine dam failure. These floods occur as mountain glaciers recede and downwaste and many have an enormous impact on downstream communities and infrastructure. Our assessment of GLOFs associated with the collapse of moraine-dammed lakes provides insights into the historical trends of GLOFs and their distributions under current and future global climate change. We observe a clear global increase in GLOF frequency and their regularity around 1930, which likely represents a lagged response to post-Little Ice Age warming. Notably, we also show that GLOF frequency and their regularity – rather unexpectedly – has declined in recent decades even during a time of rapid glacier recession. Although previous studies have suggested that GLOFs will increase in response to climate warming and glacier recession, our global results demonstrate that this has not yet clearly happened. From assessment of the timing of climate forcing, lag times in glacier recession, lake formation and moraine dam failure, we predict increased GLOF frequencies during the next decades and into the 22nd century.SH was funded by a Leverhulme Research Fellowship. SH, RAB and AW acknowledge funding under the HELIX (European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 603864). AW and RAB acknowledge funding from the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101)

    Saturn satellites as seen by Cassini Mission

    Full text link
    In this paper we will summarize some of the most important results of the Cassini mission concerning the satellites of Saturn. Given the long duration of the mission, the complexity of the payload onboard the Cassini Orbiter and the amount of data gathered on the satellites of Saturn, it would be impossible to describe all the new discoveries made, therefore we will describe only some selected, paramount examples showing how Cassini's data confirmed and extended ground-based observations. In particular we will describe the achievements obtained for the satellites Phoebe, Enceladus and Titan. We will also put these examples in the perspective of the overall evolution of the system, stressing out why the selected satellites are representative of the overall evolution of the Saturn system.Comment: 34 pages, 10 figures, to appear on the special issue of Earth, Moon and Planets for the Elba worksho
    • …
    corecore