21 research outputs found

    Comparison of the in vitro invasive capabilities of Plasmodium falciparum schizonts isolated by Percoll gradient or using magnetic based separation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Percoll gradient centrifugation is often used for synchronization, enrichment, or isolation of a particular stage of <it>Plasmodium falciparum</it>. However, Percoll, a hyperosmotic agent, may have harmful effects on the parasites. Magnetic bead column (MBC) separation has been used as an alternative. This is a report of a head-to-head comparison of the <it>in vitro </it>invasive capabilities of parasites isolated by either of the two methods.</p> <p>Methods</p> <p>The <it>P. falciparum </it>laboratory strain isolate 7G8 was grown <it>in vitro </it>using standard procedures and synchronized using 5% sorbitol. On separate days when the schizont parasitaemia was >1%, the culture was split and half was processed by Percoll gradient centrifugation and the other half by magnetic bead column separation. Both processed parasites were placed back in culture and allowed to invade new uninfected erythrocytes.</p> <p>Results</p> <p>In 10 paired assays, the mean efficiency of invasion of 7G8 parasites treated by Percoll gradient centrifugation was 35.8% that of those treated by magnetic bead column separation (95% CI, p = 0.00067) A paired <it>t </it>test with two tails was used for these comparisons.</p> <p>Conclusions</p> <p>In this comparison, magnetic bead column separation of 7G8 schizonts resulted in higher viability and efficiency of invasion than utilizing Percoll gradient centrifugation.</p

    Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum

    Get PDF
    Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of erythrocyte invasion are incompletely understood. P. falciparum depends heavily on sialic acid present on glycophorins to invade erythrocytes. However, a significant proportion of laboratory and field isolates are also able to invade erythrocytes in a sialic acid-independent manner. The identity of the erythrocyte sialic acid-independent receptor has been a mystery for decades. We report here that the complement receptor 1 (CR1) is a sialic acid-independent receptor for the invasion of erythrocytes by P. falciparum. We show that soluble CR1 (sCR1) as well as polyclonal and monoclonal antibodies against CR1 inhibit sialic acid-independent invasion in a variety of laboratory strains and wild isolates, and that merozoites interact directly with CR1 on the erythrocyte surface and with sCR1-coated microspheres. Also, the invasion of neuraminidase-treated erythrocytes correlates with the level of CR1 expression. Finally, both sialic acid-independent and dependent strains invade CR1 transgenic mouse erythrocytes preferentially over wild-type erythrocytes but invasion by the latter is more sensitive to neuraminidase. These results suggest that both sialic acid-dependent and independent strains interact with CR1 in the normal red cell during the invasion process. However, only sialic acid-independent strains can do so without the presence of glycophorin sialic acid. Our results close a longstanding and important gap in the understanding of the mechanism of erythrocyte invasion by P. falciparum that will eventually make possible the development of an effective blood stage vaccine

    Pharmacokinetics and Absorption of Paromomycin and Gentamicin from Topical Creams Used To Treat Cutaneous Leishmaniasis

    Get PDF
    This study evaluated the pharmacokinetics of topical creams containing 15% paromomycin (“paromomycin alone”) and 15% paromomycin plus 0.5% gentamicin (WR 279,396) in patients with cutaneous leishmaniasis. The investigational creams were applied topically to all lesions once daily for 20 days. Plasma samples were analyzed for simultaneous quantitation of paromomycin and gentamicin isomers and total gentamicin. Pharmacokinetic parameters for gentamicin could not be calculated because detectable levels were rarely evident. After one application, the paromomycin area under the concentration-time curve from 0 to 24 h (AUC0–24) was 2,180 +/- 2,621 ng · h/ml (mean +/- standard deviation [SD]) for the paromomycin-alone group and 975.6 +/- 1,078 ng · h/ml for the WR 279,396 group. After 20 days of application, the paromomycin AUC0–24 and maximum concentration of drug (Cmax) were 5 to 6 times greater than those on day 1 for both treatment groups. For the paromomycin-alone group, the AUC0–24 was 8,575 +/- 7,268 ng · h/ml and the Cmax was 1,000 +/- 750 ng/ml, compared with 6,037 +/- 3,956 ng · h/ml and 660 +/- 486 ng/ml for the WR 279,396 group, respectively. Possibly due to large intersubject variability, no differences (P\u3e0.05) in the AUC0–24 or Cmax were noted between treatment or between sites on day 1 or 20. The percentage of dose absorbed on day 20 was 12.0% +/- 6.26% and 9.68% +/- 6.05% for paromomycin alone and WR 279,396, respectively. Paromomycin concentrations in plasma after 20 days of application were 5 to 9% of those after intramuscular administration of 15 mg/kg of body weight/day to adults for the systemic treatment of visceral leishmaniasis. Effective topical treatment of cutaneous leishmaniasis appears to be possible with limited paromomycin and gentamicin systemic absorption, thus avoiding drug accumulation and toxicity. (The work described here has been registered at ClinicalTrials.gov under registration no. NCT01032382 and NCT01083576.
    corecore