157 research outputs found

    Multidecadal warming of Antarctic waters

    Get PDF
    Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt

    Short-term climate response to a freshwater pulse in the Southern Ocean

    Get PDF
    The short-term response of the climate system to a freshwater anomaly in the Southern Ocean is investigated using a coupled global climate model. As a result of the anomaly, ventilation of deep waters around Antarctica is inhibited, causing a warming of the deep ocean, and a cooling of the surface. The surface cooling causes Antarctic sea-ice to thicken and increase in extent, and this leads to a cooling of Southern Hemisphere surface air temperature. The surface cooling increases over the first 5 years, then remains constant over the next 5 years. There is a more rapid response in the Pacific Ocean, which transmits a signal to the Northern Hemisphere, ultimately causing a shift to the negative phase of the North Atlantic Oscillation in years 5–10

    Glider observations of thermohaline staircases in the tropical North Atlantic using an automated classifier

    Get PDF
    Thermohaline staircases are stepped structures of alternating thick mixed layers and thin high-gradient interfaces. These structures can be up to several tens of metres thick and are associated with double-diffusive mixing. Thermohaline staircases occur across broad swathes of the Arctic and tropical and subtropical oceans and can increase rates of diapycnal mixing by up to 5 times the background rate, driving substantial nutrient fluxes to the upper ocean. In this study, we present an improved classification algorithm to detect thermohaline staircases in ocean glider profiles. We use a dataset of 1162 glider profiles from the tropical North Atlantic collected in early 2020 at the edge of a known thermohaline staircase region. The algorithm identifies thermohaline staircases in 97.7 % of profiles that extend deeper than 300 m. We validate our algorithm against previous results obtained from algorithmic classification of Argo float profiles. Using fine-resolution temperature data from a fast-response thermistor on one of the gliders, we explore the effect of varying vertical bin sizes on detected thermohaline staircases. Our algorithm builds on previous work by adding improved flexibility and the ability to classify staircases from profiles with noisy salinity data. Using our results, we propose that the incidence of thermohaline staircases is limited by strong background vertical gradients in conservative temperature and absolute salinity.</p

    Upper ocean distribution of glacial meltwater in the Amundsen Sea, Antarctica

    Get PDF
    Pine Island Ice Shelf, in the Amundsen Sea, is losing mass due to increased heat transport by warm ocean water penetrating beneath the ice shelf and causing basal melt. Tracing this warm deep water and the resulting glacial meltwater can identify changes in melt rate and the regions most affected by the increased input of this freshwater. Here, optimum multi‐parameter analysis is used to deduce glacial meltwater fractions from independent water mass characteristics (standard hydrographic observations, noble gases and oxygen isotopes), collected during a ship‐based campaign in the eastern Amundsen Sea in February‐March 2014. Noble gases (neon, argon, krypton and xenon) and oxygen isotopes are used to trace the glacial melt and meteoric water found in seawater and we demonstrate how their signatures can be used to rectify the hydrographic trace of glacial meltwater, which provides a much higher resolution picture. The presence of glacial meltwater is shown to mask the Winter Water properties, resulting in differences between the water mass analyses of up to 4 g kg−1 glacial meltwater content. This discrepancy can be accounted for by redefining the ”pure” Winter Water endpoint in the hydrographic glacial meltwater calculation. The corrected glacial meltwater content values show a persistent signature between 150 ‐ 400 m of the water column across all of the sample locations (up to 535 km from Pine Island Ice Shelf), with increased concentration towards the west along the coastline. It also shows, for the first time, the signature of glacial meltwater flowing off‐shelf in the eastern channel

    Meridional heat transport across the Antarctic Circumpolar Current by the Antarctic Bottom Water overturning cell

    Get PDF
    The heat transported by the lower limb of the Southern Ocean meridional overturning circulation is commonly held to be negligible in comparison with that transported by eddies higher in the water column. We use output from one of the first global high resolution models to have a reasonably realistic export of Antarctic Bottom Water, the OCCAM one twelfth degree model. The heat fluxed southward by the deep overturning cell using the annual mean field for 1994 at 56S is 0.033 PW, but the 5-day mean fields give a larger heat flux (0.048 and 0.061 PW depending on calculation method). This is more than 30% of previous estimates of the total heat flux. Eddies and other transients add considerably to the heat flux. These results imply that this component of meridional heat flux may not be negligible as has been supposed

    Physical Controls on Oxygen Distribution and Denitrification Potential in the North West Arabian Sea

    Get PDF
    At suboxic oxygen concentrations, key biogeochemical cycles change and denitrification becomes the dominant remineralization pathway. Earth system models predict oxygen loss across most ocean basins in the next century; oxygen minimum zones near suboxia may become suboxic and therefore denitrifying. Using an ocean glider survey and historical data, we show oxygen loss in the Gulf of Oman (from 6–12 to <2 ÎŒmol/kg−1) not represented in climatologies. Because of the nonlinearity between denitrification and oxygen concentration, resolutions of current Earth system models are too coarse to accurately estimate denitrification. We develop a novel physical proxy for oxygen from the glider data and use a high‐resolution physical model to show eddy stirring of oxygen across the Gulf of Oman. We use the model to investigate spatial and seasonal differences in the ratio of oxic and suboxic water across the Gulf of Oman and waters exported to the wider Arabian Sea

    Frontal Structure of the Antarctic Circumpolar Current in the South Indian Ocean

    Get PDF
    Using recently published atlas data [Olbers et al., 1992] and the Fine Resolution Antarctic Model (FRAM) [Webb et al., 1991], an investigation has been conducted into the structure of the frontal jets centered around the region of the islands of Crozet (46°27'S, 52°0'E) and Kerguelen (48°15'S, 69°10'E) in the south Indian Ocean. Geostrophic current velocities and transports were calculated from the temperature and salinity fields available from the atlas and compared with results from FRAM and previous studies. We have identified the Agulhas Return Front (ARF) and the Subtropical Front (STF), as well as the following fronts of the Antarctic Circumpolar Current (ACC): the Subantarctic Front (SAP), the Polar Front (PF), and the Southern ACC Front (SACCF), from temperature and salinity characteristics and from geostrophic currents. This analysis of model and atlas data indicates that the jets associated with the ARF, STF, and SAF are topograpliically steered into a unique frontal system north of the islands, having some of the largest temperature and salinity gradients anywhere in the world ocean. The frontal jet associated with the ARF is detectable up to 75°E and has associated with it several northward branching jets. The PF bifurcates in the region of the Ob'Lena (Conrad) seamount; subsurface and surface expressions are identified, separated by as much as 8° of latitude immediately west of the Kerguelen Plateau. The surface expression, carrying the bulk of the transport (~65 Sv), is steered through the col in the Kerguelen Plateau at 56°S, 6° south of the latitude normally associated with the PF at this meridian. On crossing the plateau it rejoins the subsurface expression. In the south, passing eastward along the margin of the Antarctic continent and through the Princess Elizabeth Trough, a frontal jet is identified transporting up to 35 Sv, believed to be the SACCF [Orsi et al., 1995], placing the southern extent of the ACC in the region at 67°S. Copyright 1996 by the American Geophysical Union

    Dissolved oxygen dynamics during a phytoplankton bloom in the Ross Sea polynya

    Get PDF
    The Ross Sea polynya is one of the most productive regions in the Southern Ocean. However, limited access and high spatio-temporal variability of physical and biological processes limit the use of conventional oceanographic methods to measure early season primary productivity. High-resolution observations from two Seagliders provide insights into the timing of a bloom in the southern Ross Sea polynya in December 2010. Changes in chlorophyll and oxygen concentrations are used to assess bloom dynamics. Using a ratio of dissolved oxygen to carbon, net primary production is estimated over the duration of the bloom showing a sensitive balance between net autotrophy and heterotrophy. The two gliders, observing spatially distinct regions during the same period, found net community production rates of -0.9±0.7 and 0.7±0.4 g C m-2 d-1. The difference highlights the spatial variability of biological processes and is probably caused by observing different stages of the bloom. The challenge of obtaining accurate primary productivity estimates highlights the need for increased observational efforts, particularly focusing on subsurface processes not resolved using surface or remote observations. Without an increased observational effort and the involvement of emerging technologies, it will not be possible to determine the seasonal trophic balance of the Ross Sea polynya and quantify the shelf's importance in carbon export
    • 

    corecore