66 research outputs found
External and internal debts of Russia
The article analyzes the reasons for the aggregate external debt, the main one of which, according to the authors, is an incorrect economic strategy, a bet on a raw, and not an innovative way of development. It also provides an objective assessment of the state and dynamics of Russia's public debt in recent year
RF assisted switching in magnetic Josephson junctions
We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications
Properties of ferromagnetic Josephson junctions for memory applications
In this work we give a characterization of the RF effect of memory switching
on Nb-Al/AlOx-(Nb)-PdFe-Nb Josephson junctions as a function
of magnetic field pulse amplitude and duration, alongside with an
electrodynamical characterization of such junctions, in comparison with
standard Nb-Al/AlOx-Nb tunnel junctions. The use of microwaves to tune the
switching parameters of magnetic Josephson junctions is a step in the
development of novel addressing schemes aimed at improving the performances of
superconducting memories.Comment: IEEE Trans. Appl. Supercond. Special Issue ISEC201
ANALYSIS OF DOMAIN SPECIFICITY OF THE PROTECTIVE CHIMERIC ANTIBODY ch14D5a AGAINST GLYCOPROTEIN E OF TICK-BORNE ENCEPHALITIS VIRUS
A drug for the prevention and therapy of tick-borne encephalitis virus is being developed on the basis of the protective chimeric antibody ch14D5a. At the same time, the epitope recognized by this antibody on the surface of glycoprotein E has not been localized yet. The aim of this work was to identify the domain of glycoprotein E, to which the protective antibody ch14D5a binds. As a result, four recombinant variants of glycoprotein E were generated using the bacterial expression system: (1) the rE protein containing the domains D1, D2, and D3 of glycoprotein E; (2) the rED1+2 protein containing domains D1 and D2; (3) the rED3_301 protein, which is domain D3 of glycoprotein E, and (4) the rED3_294 protein comprising domain D3 and a hinge region connecting domains D1 and D3. The rED3_294 and rED3_301 proteins were obtained in soluble monomeric form. The rE and rED1+2 proteins were extracted from the inclusion bodies of Escherichia coli. Using Western blot analysis and surface plasmon resonance analysis, it was demonstrated that the protective chimeric antibody ch14D5a and its Fab fragment bound specifically to domain D3 of glycoprotein E. Since the antibodies recognizing epitopes on the surface of domain D3 do not tend to cause antibody-dependent enhancement of the infection as compared to antibodies directed to domains D1 and D2, the data obtained confirm the promise of using the antibody ch14D5a in the development of a therapeutic preparation against the tick-borne encephalitis virus
NADPH oxidase elevations in pyramidal neurons drive psychosocial stress-induced neuropathology
Oxidative stress is thought to be involved in the development of behavioral and histopathological alterations in animal models of psychosis. Here we investigate the causal contribution of reactive oxygen species generation by the phagocyte NADPH oxidase NOX2 to neuropathological alterations in a rat model of chronic psychosocial stress. In rats exposed to social isolation, the earliest neuropathological alterations were signs of oxidative stress and appearance of NOX2. Alterations in behavior, increase in glutamate levels and loss of parvalbumin were detectable after 4 weeks of social isolation. The expression of the NOX2 subunit p47phox was markedly increased in pyramidal neurons of isolated rats, but below detection threshold in GABAergic neurons, astrocytes and microglia. Rats with a loss of function mutation in the NOX2 subunit p47phox were protected from behavioral and neuropathological alterations induced by social isolation. To test reversibility, we applied the antioxidant/NOX inhibitor apocynin after initiation of social isolation for a time period of 3 weeks. Apocynin reversed behavioral alterations fully when applied after 4 weeks of social isolation, but only partially after 7 weeks. Our results demonstrate that social isolation induces rapid elevations of the NOX2 complex in the brain. Expression of the enzyme complex was strongest in pyramidal neurons and a loss of function mutation prevented neuropathology induced by social isolation. Finally, at least at early stages, pharmacological targeting of NOX2 activity might reverse behavioral alterations
- …