10 research outputs found

    An avalanche-photodiode-based photon-number-resolving detector

    Full text link
    Avalanche photodiodes are widely used as practical detectors of single photons.1 Although conventional devices respond to one or more photons, they cannot resolve the number in the incident pulse or short time interval. However, such photon number resolving detectors are urgently needed for applications in quantum computing,2-4 communications5 and interferometry,6 as well as for extending the applicability of quantum detection generally. Here we show that, contrary to current belief,3,4 avalanche photodiodes are capable of detecting photon number, using a technique to measure very weak avalanches at the early stage of their development. Under such conditions the output signal from the avalanche photodiode is proportional to the number of photons in the incident pulse. As a compact, mass-manufactured device, operating without cryogens and at telecom wavelengths, it offers a practical solution for photon number detection.Comment: 12 pages, 4 figure

    Mesoscopic effects in tunneling between parallel quantum wires

    Full text link
    We consider a phase-coherent system of two parallel quantum wires that are coupled via a tunneling barrier of finite length. The usual perturbative treatment of tunneling fails in this case, even in the diffusive limit, once the length L of the coupling region exceeds a characteristic length scale L_t set by tunneling. Exact solution of the scattering problem posed by the extended tunneling barrier allows us to compute tunneling conductances as a function of applied voltage and magnetic field. We take into account charging effects in the quantum wires due to applied voltages and find that these are important for 1D-to-1D tunneling transport.Comment: 8 pages, 7 figures, improved Figs., added Refs. and appendix, to appear in Phys. Rev.

    The spin-orbit interaction as a source of new spectral and transport properties in quasi-one-dimensional systems

    Full text link
    We present an exact theoretical study of the effect of the spin-orbit (SO) interaction on the band structure and low temperature transport in long quasi-one-dimensional electron systems patterned in two-dimensional electron gases in zero and weak magnetic fields. We reveal the manifestations of the SO interaction which cannot in principle be observed in higher dimensional systems.Comment: 5 pages including 5 figures; RevTeX; to appear in Phys.Rev.B (Rapid Communications

    Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices

    Full text link
    Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPC's confinement potential may enable the high g* desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.Comment: 23 pages, 7 figure

    Effect of the spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems

    Full text link
    We discuss the effect of the spin-orbit interaction on the band structure, wave functions and low temperature conductance of long quasi-one-dimensional electron systems patterned in two-dimensional electron gases (2DEG). Our model for these systems consists of a linear (Rashba) potential confinement in the direction perpendicular to the 2DEG and a parabolic confinement transverse to the 2DEG. We find that these two terms can significantly affect the band structure introducing a wave vector dependence to subband energies, producing additional subband minima and inducing anticrossings between subbands. We discuss the origin of these effects in the symmetries of the subband wave functions.Comment: 15 pages including 14 figures; RevTeX; to appear in Phys.Rev.B (15 Nov 1999

    Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography

    No full text
    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices

    Large mammals from historical collections of open-air sites of Silesia (southern Poland) with special reference to carnivores and rhinoceros

    No full text
    corecore