7 research outputs found

    CMOS Hyperbolic Sine ELIN filters for low/audio frequency biomedical applications

    Get PDF
    Hyperbolic-Sine (Sinh) filters form a subclass of Externally-Linear-Internally-Non- Linear (ELIN) systems. They can handle large-signals in a low power environment under half the capacitor area required by the more popular ELIN Log-domain filters. Their inherent class-AB nature stems from the odd property of the sinh function at the heart of their companding operation. Despite this early realisation, the Sinh filtering paradigm has not attracted the interest it deserves to date probably due to its mathematical and circuit-level complexity. This Thesis presents an overview of the CMOS weak inversion Sinh filtering paradigm and explains how biomedical systems of low- to audio-frequency range could benefit from it. Its dual scope is to: consolidate the theory behind the synthesis and design of high order Sinh continuous–time filters and more importantly to confirm their micro-power consumption and 100+ dB of DR through measured results presented for the first time. Novel high order Sinh topologies are designed by means of a systematic mathematical framework introduced. They employ a recently proposed CMOS Sinh integrator comprising only p-type devices in its translinear loops. The performance of the high order topologies is evaluated both solely and in comparison with their Log domain counterparts. A 5th order Sinh Chebyshev low pass filter is compared head-to-head with a corresponding and also novel Log domain class-AB topology, confirming that Sinh filters constitute a solution of equally high DR (100+ dB) with half the capacitor area at the expense of higher complexity and power consumption. The theoretical findings are validated by means of measured results from an 8th order notch filter for 50/60Hz noise fabricated in a 0.35μm CMOS technology. Measured results confirm a DR of 102dB, a moderate SNR of ~60dB and 74μW power consumption from 2V power supply

    CMOS Hyperbolic-Sine ELIN filters for low/audio frequency biomedical applications

    No full text
    Hyperbolic-Sine (Sinh) filters form a subclass of Externally-Linear-Internally-Non-Linear (ELIN) systems. They can handle large-signals in a low power environment under half the capacitor area required by the more popular ELIN Log-domain filters. Their inherent class-AB nature stems from the odd property of the sinh function at the heart of their companding operation. Despite this early realisation, the Sinh filtering paradigm has not attracted the interest it deserves to date probably due to its mathematical and circuit-level complexity. This Thesis presents an overview of the CMOS weak inversion Sinh filtering paradigm and explains how biomedical systems of low- to audio-frequency range could benefit from it. Its dual scope is to: consolidate the theory behind the synthesis and design of high order Sinh continuous–time filters and more importantly to confirm their micro-power consumption and 100+ dB of DR through measured results presented for the first time. Novel high order Sinh topologies are designed by means of a systematic mathematical framework introduced. They employ a recently proposed CMOS Sinh integrator comprising only p-type devices in its translinear loops. The performance of the high order topologies is evaluated both solely and in comparison with their Log domain counterparts. A 5th order Sinh Chebyshev low pass filter is compared head-to-head with a corresponding and also novel Log domain class-AB topology, confirming that Sinh filters constitute a solution of equally high DR (100+ dB) with half the capacitor area at the expense of higher complexity and power consumption. The theoretical findings are validated by means of measured results from an 8th order notch filter for 50/60Hz noise fabricated in a 0.35μm CMOS technology. Measured results confirm a DR of 102dB, a moderate SNR of ~60dB and 74μW power consumption from 2V power supply.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Surgical wound monitoring by MRI with a metamaterial-based implanted local coil

    No full text
    An implantable sensor for monitoring surgical wounds after bowel reconstruction is proposed. The sensor consists of a coupled pair of 8-element magneto-inductive ring resonators, designed for mounting on a biofragmentable anastomosis ring to give a local increase in signal-to-noise ratio near an annular wound during 1H magnetic resonance imaging. Operation on an anti-symmetric spatial mode is used to avoid coupling to the B1 field during excitation, and a single wired connection is used for MRI signal output. The electrical response and field-of-view are estimated theoretically. Prototypes are constructed from flexible elements designed for operation at 1.5 T, electrical responses are characterized and local SNR enhancement is confirmed using agar gel phantoms

    Surgical wound monitoring by MRI with a metamaterial-based implanted local coil

    No full text
    An implantable sensor for monitoring surgical wounds after bowel reconstruction is proposed. The sensor consists of a coupled pair of 8-element magneto-inductive ring resonators, designed for mounting on a biofragmentable anastomosis ring to give a local increase in signal-to-noise ratio near an annular wound during 1H magnetic resonance imaging. Operation on an anti-symmetric spatial mode is used to avoid coupling to the B1 field during excitation, and a single wired connection is used for MRI signal output. The electrical response and field-of-view are estimated theoretically. Prototypes are constructed from flexible elements designed for operation at 1.5 T, electrical responses are characterized and local SNR enhancement is confirmed using agar gel phantoms

    SNR in MI Catheter Receivers for MRI

    No full text

    Optothermal profile of an ablation catheter with integrated microcoil for MR-thermometry during Nd:YAG laser interstitial thermal therapies of the liver-An in-vitro experimental and theoretical study

    No full text
    PURPOSE: Flexible microcoils integrated with ablation catheters can improve the temperature accuracy during local MR-thermometry in Nd:YAG laser interstitial thermal therapies. Here, the authors are concerned with obtaining a preliminary confirmation of the clinical utility of the modified catheter. They investigate whether the thin-film substrate and copper tracks of the printed coil inductor affect the symmetry of the thermal profile, and hence of the lesion produced. METHODS: Transmission spectroscopy in the near infrared was performed to test for the attenuation at 1064 nm through the 25 μm thick Kapton substrate of the microcoil. The radial transmission profile of an infrared high-power, light emitting diode with >80% normalized power at 1064 nm was measured through a cross section of the modified applicator to assess the impact of the copper inductor on the optical profile. The measurements were performed in air, as well as with the applicator surrounded by two types of scattering media; crystals of NaCl and a layer of liver-mimicking gel phantom. A numerical model based on Huygens–Fresnel principle and finite element simulations, using a commercially available package (COMSOL Multiphysics), were employed to compare with the optical measurements. The impact of the modified optical profile on the thermal symmetry was assessed by examining the high resolution microcoil derived thermal maps from a Nd:YAG laser ablation performed on a liver-mimicking gel phantom. RESULTS: Less than 30% attenuation through the Kapton film was verified. Shadowing behind the copper tracks was observed in air and the measured radial irradiation correlated well with the diffraction pattern calculated numerically using the Huygens–Fresnel principle. Both optical experiments and simulations, demonstrate that shadowing is mitigated by the scattering properties of a turbid medium. The microcoil derived thermal maps at the end of a Nd:YAG laser ablation performed on a gel phantom in a 3 T scanner confirm that the modified irradiation pattern does not disrupt the thermal symmetry, even though, unlike tissue, the gel is minimally scattering. CONCLUSIONS: The results from this initial assessment indicate that microcoils can be safely integrated with ablation catheters and ensure that the complete necrosis of the liver tumor can still be achieved
    corecore