117 research outputs found

    Towards Understanding Photoperiodic Response in Grasses

    Get PDF
    In many plants, day length is the critical environmental parameter that controls flowering time. In long day plants, such as Arabidopsis and ryegrass (Lolium perenne), increasing day length in spring signals flowering, while in short day plants like rice, flowering is accelerated when days become shorter. Recently, significant progress has been made in understanding the molecular genetic mechanisms that govern this response. Most results have been obtained in the model plant Arabidopsis where CONSTANS (CO) is a critical candidate gene. Upstream of it is the GIGANTEA (GI) gene which is associated with the circadian clock mechanism (1). The FT gene is the immediate downstream genetic target of CO, and is a direct promoter of flowering (2). Characteristically, all three genes show circadian expression, albeit in different phases, and both the CO and FT genes are up-regulated under long-day (inductive) conditions. Work in ryegrass should help reveal both the conserved and divergent segments of the photoperiod response between different plant species

    Controlled Flowering Project for Lolium Perenne at Agresearch: an Overview

    Get PDF
    Ryegrass (Lolium perenne) is an important forage crop in New Zealand. The work presented here has the goal of developing a system for complete and arbitrary control of the transition from vegetative to floral development. For this, we have pursued an integrated approach utilising genomics with both forward and reverse genetics. Like other model plants, photoperiodic and vernalization pathways are presumed to be operating in ryegrass and control the activity of the meristem identity/floral patterning genes. The candidate gene approach targeting the photoperiodic pathway is described in an accompanying abstract (Gagic et al.). Other candidate genes include the meristem identity gene LEAFY and a range of the MADS box transcription factors. Relevant expression profiles are established for these genes, i.e. vernalization time course at weekly intervals, and daily and circadian collections during the secondary induction. A detailed genetic map of ryegrass has been developed at AgResearch (see abstract by Faville et al.) which we are using to map candidate genes. We are also conducting detailed phenotypic analysis of the flowering behaviour variation within this population in an effort to isolate relevant QTLs. Ryegrass transformation has been used to ascertain functions of the candidate genes and to manipulate flowering time control directly. We are developing a universal switch to turn on the flowering that consists of a cassette of the arabidopsis genes under a control of a chemically inducible promoter

    Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING

    Get PDF
    Wild peppers (Capsicum spp.) are either annual or perennial in their native habitat and their shoot architecture is dictated by their sympodial growth habit. To study shoot architecture in pepper, sympodial development is described in wild type and in the classical recessive fasciculate (fa) mutation. The basic sympodial unit in wild-type pepper comprises two leaves and a single terminal flower. fasciculate plants are characterized by the formation of floral clusters separated by short internodes and miniature leaves and by early flowering. Developmental analysis of these clusters revealed shorter sympodial units and, often, precocious termination prior to sympodial leaf formation. fa was mapped to pepper chromosome 6, in a region corresponding to the tomato SELF-PRUNING (SP) locus, the homologue of TFL1 of Arabidopsis. Sequence comparison between wild-type and fa plants revealed a duplication of the second exon in the mutants' orthologue of SP, leading to the formation of a premature stop codon. Ectopic expression of FASCICULATE complemented the Arabidopsis tfl1 mutant plants and as expected, stimulated late flowering. In agreement with the major effect of FASCICULATE imposed on sympodial development, the gene transcripts were localized to the centre of sympodial shoots but could not be detected in the primary shoot. The wide range of pleiotropic effects on plant architecture mediated by a single ‘flowering’ gene, suggests that it is used to co-ordinate many developmental events, and thus may underlie some of the widespread variation in the Solanaceae shoot architecture

    Short Day–Mediated Cessation of Growth Requires the Downregulation of AINTEGUMENTALIKE1 Transcription Factor in Hybrid Aspen

    Get PDF
    Day length is a key environmental cue regulating the timing of major developmental transitions in plants. For example, in perennial plants such as the long-lived trees of the boreal forest, exposure to short days (SD) leads to the termination of meristem activity and bud set (referred to as growth cessation). The mechanism underlying SD–mediated induction of growth cessation is poorly understood. Here we show that the AIL1-AIL4 (AINTEGUMENTALIKE) transcription factors of the AP2 family are the downstream targets of the SD signal in the regulation of growth cessation response in hybrid aspen trees. AIL1 is expressed in the shoot apical meristem and leaf primordia, and exposure to SD signal downregulates AIL1 expression. Downregulation of AIL gene expression by SDs is altered in transgenic hybrid aspen plants that are defective in SD perception and/or response, e.g. PHYA or FT overexpressors. Importantly, SD–mediated regulation of growth cessation response is also affected by overexpression or downregulation of AIL gene expression. AIL1 protein can interact with the promoter of the key cell cycle genes, e.g. CYCD3.2, and downregulation of the expression of D-type cyclins after SD treatment is prevented by AIL1 overexpression. These data reveal that execution of SD–mediated growth cessation response requires the downregulation of AIL gene expression. Thus, while early acting components like PHYA and the CO/FT regulon are conserved in day-length regulation of flowering time and growth cessation between annual and perennial plants, signaling pathways downstream of SD perception diverge, with AIL transcription factors being novel targets of the CO/FT regulon connecting the perception of SD signal to the regulation of meristem activity

    Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response

    Get PDF
    The transcriptional regulator CONSTANS (CO) promotes flowering of Arabidopsis under long summer days (LDs) but not under short winter days (SDs). Post-translational regulation of CO is crucial for this response by stabilizing the protein at the end of a LD, whereas promoting its degradation throughout the night under LD and SD. We show that mutations in CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a component of a ubiquitin ligase, cause extreme early flowering under SDs, and that this is largely dependent on CO activity. Furthermore, transcription of the CO target gene FT is increased in cop1 mutants and decreased in plants overexpressing COP1 in phloem companion cells. COP1 and CO interact in vivo and in vitro through the C-terminal region of CO. COP1 promotes CO degradation mainly in the dark, so that in cop1 mutants CO protein but not CO mRNA abundance is dramatically increased during the night. However, in the morning CO degradation occurs independently of COP1 by a phytochrome B-dependent mechanism. Thus, COP1 contributes to day length perception by reducing the abundance of CO during the night and thereby delaying flowering under SDs

    A Companion Cell–Dominant and Developmentally Regulated H3K4 Demethylase Controls Flowering Time in Arabidopsis via the Repression of FLC Expression

    Get PDF
    Flowering time relies on the integration of intrinsic developmental cues and environmental signals. FLC and its downstream target FT are key players in the floral transition in Arabidopsis. Here, we characterized the expression pattern and function of JMJ18, a novel JmjC domain-containing histone H3K4 demethylase gene in Arabidopsis. JMJ18 was dominantly expressed in companion cells; its temporal expression pattern was negatively and positively correlated with that of FLC and FT, respectively, during vegetative development. Mutations in JMJ18 resulted in a weak late-flowering phenotype, while JMJ18 overexpressors exhibited an obvious early-flowering phenotype. JMJ18 displayed demethylase activity toward H3K4me3 and H3K4me2, and bound FLC chromatin directly. The levels of H3K4me3 and H3K4me2 in chromatins of FLC clade genes and the expression of FLC clade genes were reduced, whereas FT expression was induced and the protein expression of FT increased in JMJ18 overexpressor lines. The early-flowering phenotype caused by the overexpression of JMJ18 was mainly dependent on the functional FT. Our findings suggest that the companion cell–dominant and developmentally regulated JMJ18 binds directly to the FLC locus, reducing the level of H3K4 methylation in FLC chromatin and repressing the expression of FLC, thereby promoting the expression of FT in companion cells to stimulate flowering

    Regulation of Plant Developmental Processes by a Novel Splicing Factor

    Get PDF
    Serine/arginine-rich (SR) proteins play important roles in constitutive and alternative splicing and other aspects of mRNA metabolism. We have previously isolated a unique plant SR protein (SR45) with atypical domain organization. However, the biological and molecular functions of this novel SR protein are not known. Here, we report biological and molecular functions of this protein. Using an in vitro splicing complementation assay, we showed that SR45 functions as an essential splicing factor. Furthermore, the alternative splicing pattern of transcripts of several other SR genes was altered in a mutant, sr45-1, suggesting that the observed phenotypic abnormalities in sr45-1 are likely due to altered levels of SR protein isoforms, which in turn modulate splicing of other pre-mRNAs. sr45-1 exhibited developmental abnormalities, including delayed flowering, narrow leaves and altered number of petals and stamens. The late flowering phenotype was observed under both long days and short days and was rescued by vernalization. FLC, a key flowering repressor, is up-regulated in sr45-1 demonstrating that SR45 influences the autonomous flowering pathway. Changes in the alternative splicing of SR genes and the phenotypic defects in the mutant were rescued by SR45 cDNA, further confirming that the observed defects in the mutant are due to the lack of SR45. These results indicate that SR45 is a novel plant-specific splicing factor that plays a crucial role in regulating developmental processes
    corecore