45 research outputs found

    Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells

    Get PDF
    Background: Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. Results: By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1ÎČ, TNF-α, IL-6, IL-8, MIP-1ÎČ) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. Conclusion: A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis

    Vesicle-independent extracellular release of a proinflammatory outer membrane lipoprotein in free-soluble form

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aggregatibacter actinomycetemcomitans </it>is an oral bacterium associated with aggressively progressing periodontitis. Extracellular release of bacterial outer membrane proteins has been suggested to mainly occur via outer membrane vesicles. This study investigated the presence and conservation of peptidoglycan-associated lipoprotein (AaPAL) among <it>A. actinomycetemcomitans </it>strains, the immunostimulatory effect of AaPAL, and whether live cells release this structural outer membrane lipoprotein in free-soluble form independent of vesicles.</p> <p>Results</p> <p>The <it>pal </it>locus and its gene product were confirmed in clinical <it>A. actinomycetemcomitans </it>strains by PCR-restriction fragment length polymorphism and immunoblotting. Culturing under different growth conditions revealed no apparent requirement for the AaPAL expression. Inactivation of <it>pal </it>in a wild-type strain (D7S) and in its spontaneous laboratory variant (D7SS) resulted in pleiotropic cellular effects. In a cell culture insert model (filter pore size 0.02 ÎŒm), AaPAL was detected from filtrates when strains D7S and D7SS were incubated in serum or broth in the inserts. Electron microscopy showed that <it>A. actinomycetemcomitans </it>vesicles (0.05–0.2 ÎŒm) were larger than the filter pores and that there were no vesicles in the filtrates. The filtrates were immunoblot negative for a cytoplasmic marker, cyclic AMP (cAMP) receptor protein. An ex vivo model indicated cytokine production from human whole blood stimulated by AaPAL.</p> <p>Conclusion</p> <p>Free-soluble AaPAL can be extracellularly released in a process independent of vesicles.</p

    Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome

    Get PDF
    Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as “moonlighting proteins,” comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1ÎČ, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens

    Phosphorylcholine is located in Aggregatibacter actinomycetemcomitans fimbrial protein Flp 1

    Get PDF
    Phosphorylcholine (ChoP) is covalently incorporated into bacterial surface structures, contributing to host mimicry and promoting adhesion to surfaces. Our aims were to determine the frequency of ChoP display among Aggregatibacter actinomycetemcomitans strains, to clarify which surface structures bear ChoP, and whether ChoP-positivity relates to serum killing. The tested oral (N = 67) and blood isolates (N = 27) represented 6 serotypes. Mab TEPC-15 was used for immunoblotting of cell lysates and fractions and for immunofluorescence microscopy of cell surface-bound ChoP. The lysates were denatured with urea for hidden ChoP or treated with proteinase K to test whether it binds to a protein. Three ChoP-positive and two ChoP-negative strains were subjected to serum killing in the presence/absence of CRP and using Ig-depleted serum as complement source. Cell lysates and the first soluble cellular fraction revealed a < 10 kDa band in immunoblots. Among 94 strains, 27 were ChoP positive. No difference was found in the prevalence of ChoP-positive oral (21/67) and blood (6/27) strains. Immunofluorescence microscopy corresponded to the immunoblot results. Proteinase K abolished ChoP reactivity, whereas urea did not change the negative result. The TEPC-15-reactive protein was undetectable in Δflp1 mutant strain. The survival rate of serotype-b strains in serum was 100% irrespective of ChoP, but that of serotype-a was higher in ChoP-positive (85%) than ChoP-negative (71%) strains. The results suggest that a third of rough-colony strains harbor ChoP and that ChoP is attached to fimbrial subunit protein Flp1. It further seems that ChoP-positivity does not enhance but may reduce A. actinomycetemcomitans susceptibility to serum killing

    Mapping the epithelial-cell-binding domain of the Aggregatibacter actinomycetemcomitans autotransporter adhesin Aae

    Get PDF
    The Gram-negative periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) binds selectively to buccal epithelial cells (BECs) of human and Old World primates by means of the outer-membrane autotransporter protein Aae. We speculated that the exposed N-terminal portion of the passenger domain of Aae would mediate binding to BECs. By using a series of plasmids that express full-length or truncated Aae proteins in Escherichia coli, we found that the BEC-binding domain of Aae was located in the N-terminal surface-exposed region of the protein, specifically in the region spanning amino acids 201–284 just upstream of the repeat region within the passenger domain. Peptides corresponding to amino acids 201–221, 222–238 and 201–240 were synthesized and tested for their ability to reduce Aae-mediated binding to BECs based on results obtained with truncated Aae proteins expressed in E. coli. BEC-binding of E. coli expressing Aae was reduced by as much as 50 % by pre-treatment of BECs with a 40-mer peptide (201–240; P40). Aae was also shown to mediate binding to cultured human epithelial keratinocytes (TW2.6), OBA9 and TERT, and endothelial (HUVEC) cells. Pre-treatment of epithelial cells with P40 resulted in a dose-dependent reduction in binding and reduced the binding of both full-length and truncated Aae proteins expressed in E. coli, as well as Aae expressed in Aa. Fluorescently labelled P40 peptides reacted in a dose-dependent manner with BEC receptors. We propose that these proof-of-principle experiments demonstrate that peptides can be designed to interfere with Aa binding mediated by host-cell receptors specific for Aae adhesins

    Vesicle-independent extracellular release and bioactivity of peptidoglycan-associated lipoprotein from Aggregatibacter actinomycetemcomitans

    No full text
    Aggregatibacter (Actinobacillus) actinomycetemcomitans is a Gram-negative coccobacillus of the Pasteurellaceae family. It is implicated in periodontitis, a common low-grade bacterial infection, but it can also cause non-oral infections. The main aim of this project was to identify and characterize in A. actinomycetemcomitans novel cell surface components bearing virulence potential that could contribute to systemic immunoinflammatory burden. We first established and evaluated a method for preparing homogeneous cell suspensions of autoaggregating clinical isolates of A. actinomycetemcomitans. The chosen method is based on a gradual dispersion of bacterial colonies into solution, which generated homogeneous suspensions without losing cell viability or fimbriation. When sera from two patients with A. actinomycetemcomitans-associated infections were used to probe A. actinomycetemcomitans outer membrane protein (OMP) preparations in western blot, strong reactions were found at 17 kDa. Interestingly, antiserum against CsgA, a major subunit of Eschirichia coli curli, also reacted with A. actinomycetemcomitans OMP preparations at 17 kDa size, that is the size of E. coli CsgA, suggesting antigenic crossreactivity. The 17 kDa A. actinomycetemcomitans OMP was subsequently identified as peptidoglycan-associated lipoprotein (PAL; AaPAL) by using immunoproteomics methods. Studies on the pal gene and its gene product showed that they were conserved among the clinical A. actinomycetemcomitans isolates representing all currently known serotypes. AaPAL expression was shown under different nutritional and atmospheric conditions that resembled those in periodontal pockets. PAL deficiency in turn led to pleiotropic effects on the phenotype of A. actinomycetemcomitans, such as cell elongation and decreased growth rate. To purify AaPAL we employed affinity chromatography using anti-AaPAL peptide antibodies. The extensive characterization of the purified AaPAL by SDS-PAGE gel staining and mass spectrometry demonstrated that the final purification product did not contain other bacterial proteins than AaPAL. The protein had not lost its antigenicity during purification, since it was recognized by sera from patients with A. actinomycetemcomitans-associated oral and nonoral infections. AaPAL also appeared to be a strongly immunoreactive antigen in patients with periodontitis whose serum IgG antibodies recognized in western blot a 17 kDa OMP in the parental strain but not in the pal-deficient mutant. In addition to its immunogenicity, AaPAL also induced proinflammatory cytokine and chemokine response from human whole blood as determined by a cytokine antibody array. A cell culture insert model was designed to study how bacterial components could be introduced to the host in infections. The experiments demonstrated that live bacteria released extracellularly free-soluble AaPAL, but also other components, via an unknown outer membrane vesicle-independent mechanism. The immunogenicity and proinflammatory potential of the previously uncharacterized outer membrane lipoprotein of A. actinomycetemcomitans, AaPAL, suggests that it contributes to the pathogenicity of this bacterium. That live A. actinomycetemcomitans cells released free-soluble cell components may represent a new pathogenic mechanism

    Anticandidal Activity of Capsaicin and Its Effect on Ergosterol Biosynthesis and Membrane Integrity of <i>Candida albicans</i>

    No full text
    Oral candidiasis is an infection of the oral cavity commonly caused by Candida albicans. Endodontic treatment failure has also been found to be persistent from C. albicans in the root canal system. Despite the availability of antifungal drugs, the management of Candida oral infection is difficult as it exhibits resistance to a different class of antifungal drugs. Therefore, it is necessary to discover new antifungal compounds to cure fungal infections. This study aimed to examine the antifungal susceptibility of Capsaicin, an active compound of chili pepper. The susceptibility of Capsaicin and Fluconazole was tested against the Candida species by the CLSI (M27-A3) method. The effect of Capsaicin on the fungal cell wall was examined by the ergosterol inhibitory assay and observed by the scanning electron micrograph. The MIC range of Capsaicin against Candida isolates from oral (n = 30), endodontic (n = 8), and ATCC strains (n = 2) was 12.5–50 ”g/mL. The MIC range of Fluconazole (128- 4 ”g/mL) significantly decreased (2- to 4-fold) after the combination with Capsaicin (MIC/4) (p C. albicans by 70 to 89% (p p C. albicans cells, whereas a micrograph of electron microscopy showed the distorted cells’ shape, ruptured cell walls, and shrinkage of cells after the release of intracellular content. The results conclude that Capsaicin had a potential antifungal activity that inhibits the ergosterol biosynthesis in the cell wall, and therefore, the cells’ structure and integrity were disrupted. More importantly, Capsaicin synergistically enhanced the Fluconazole antifungal activity, and the synergistic effect might be helpful in the prevention of Fluconazole resistance development and reduced drug-dosing

    The potential of nano graphene oxide and chlorhexidine composite membranes for use as a surface layer in functionally graded membranes for periodontal lesions

    No full text
    Abstract Membranes have been used for treating periodontal defects and play a crucial role in guided bone regeneration applications. Nano graphene oxide have been exploited in tissue engineering due to its biomechanical properties. Its composite formulations with hydroxyapatite and chitosan with controlled degradation could aid in becoming part of a surface layer in a functionally graded membrane. The aim of the study was to synthesize chitosan and composite formulations of nano graphene oxide, hydroxyapatite and chlorhexidine digluconate using solvent casting technique and to characterize the physiochemical, mechanical, water vapor transmission rate (barrier), degradation and antimicrobial potential of the membranes. Altogether four different membranes were prepared (CH, CCG, 3511 and 3322). Results revealed the chemical interactions of hydroxyapatite, chitosan and nanographene oxide due to inter and intra molecular hydrogen bonding. The tensile strength of 3322 (33.72 ± 6.3 MPa) and 3511 (32.06 ± 5.4 MPa) was higher than CH (27.46 ± 9.6 MPa). CCG showed the lowest water vapor transmission rate (0.23 ± 0.01 g/h.m2) but the highest weight loss at day 14 (76.6 %). 3511 showed a higher drug release after 72 h (55.6 %) Significant biofilm growth inhibition was observed for all membranes. 3511 showed complete inhibition against A. actinomycetemcomitans. Detailed characterization of the synthesized membranes revealed that 3511 composite membrane proved to be a promising candidate for use as a surface layer of membranes for guided bone regeneration of periodontal lesions. Graphical Abstrac

    Phosphorylcholine is located in Aggregatibacter actinomycetemcomitans fimbrial protein Flp 1

    No full text
    Phosphorylcholine (ChoP) is covalently incorporated into bacterial surface structures, contributing to host mimicry and promoting adhesion to surfaces. Our aims were to determine the frequency of ChoP display among Aggregatibacter actinomycetemcomitans strains, to clarify which surface structures bear ChoP, and whether ChoP-positivity relates to serum killing. The tested oral (N=67) and blood isolates (N=27) represented 6 serotypes. Mab TEPC-15 was used for immunoblotting of cell lysates and fractions and for immunofluorescence microscopy of cell surface-bound ChoP. The lysates were denatured with urea for hidden ChoP or treated with proteinase K to test whether it binds to a protein. Three ChoP-positive and two ChoP-negative strains were subjected to serum killing in the presence/absence of CRP and using Ig-depleted serum as complement source. Cell lysates and the first soluble cellular fraction revealed a&lt;10kDa band in immunoblots. Among 94 strains, 27 were ChoP positive. No difference was found in the prevalence of ChoP-positive oral (21/67) and blood (6/27) strains. Immunofluorescence microscopy corresponded to the immunoblot results. Proteinase K abolished ChoP reactivity, whereas urea did not change the negative result. The TEPC-15-reactive protein was undetectable in flp1 mutant strain. The survival rate of serotype-b strains in serum was 100% irrespective of ChoP, but that of serotype-a was higher in ChoP-positive (85%) than ChoP-negative (71%) strains. The results suggest that a third of rough-colony strains harbor ChoP and that ChoP is attached to fimbrial subunit protein Flp1. It further seems that ChoP-positivity does not enhance but may reduce A. actinomycetemcomitans susceptibility to serum killing
    corecore