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Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis,

few mechanistic studies on its virulence characteristics or pathogenicity are available.

Proteins secreted by this species may act as determinants of host-microbe interaction

and play a role in virulence. Our aim in this study was to investigate and functionally

characterize the secretome of G. adiacens. Proteins in the secretome preparation were

digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass

spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics

tools predicting subcellular localization revealed that 18 of the secreted proteins

possessed signal sequence. More than 20% of the secretome proteins were putative

virulence proteins including serine protease, superoxide dismutase, aminopeptidase,

molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones,

and glycolytic enzymes, together known as “moonlighting proteins,” comprised fifth of the

secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome

were grouped in biological processes or molecular functions. KEGG pathway analysis

disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics.

Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β,

MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the

current investigation of the G. adiacens secretome provide a basis for understanding

possible pathogenic mechanisms of G. adiacens.

Keywords: Granulicatella, secretome, oral, infective endocarditis, virulence, periodontitis

INTRODUCTION

Granulicatella adiacens is part of the normal microbiota in the oral cavity, urogenital, and intestinal
tract (Ruoff, 1991). It can occasionally cause serious infections such as infective endocarditis (Lin
and Hsu, 2007), but may also participate in periodontitis (Belstrøm et al., 2014), caries (Kanasi
et al., 2010), and endodontic infections (Siqueira and Rôças, 2006). It is a small Gram-positive,
non-motile, non-spore-forming, oxidase-, and catalase-negative, facultatively anaerobic coccus.

As previously members of Nutritionally Variant Streptococci and later of genus Abiotrophia, the
current taxonomy separates three Abiotrophia species under a novel genus, Granulicatella (Collins
and Lawson, 2000). The nutritional requirements of G. adiacens are complex and pyridoxal or
L-cysteine in the growth medium is essential for normal growth. Absence of these supplements
results in elongated cell morphology (Karched et al., 2015) and an altered protein expression
(Karched et al. unpublished data).
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Protein secretion helps bacteria in their normal growth and
physiology, e.g., nutrient acquisition, but it can also function as
a virulence mechanism in host colonization or by modulating
host immune responses (Finlay and Falkow, 1997; Lee and
Schneewind, 2001). Bacteria have devised dedicated secretory
systems (Natale et al., 2008; Green and Mecsas, 2016) for
protein secretion; Gram-positive species secrete mainly via
general secretory system (sec-dependent) (Schneewind and
Missiakas, 2012) or twin-arginine transport (Tat) pathway
(Goosens et al., 2014) while Gram-negative bacteria use more
complex secretory systems (Type I to Type VIII) (Costa
et al., 2015). Little knowledge is available of the protein
secretion of Granulicatella species. Recently, a close phylogenetic
relative of G. adiacens, Granulicatella elegans, was shown to
secrete arginine deiminase, which through citrullination inhibits
proliferation of human peripheral blood mononuclear cells in
vitro (Kanamoto et al., 2007), but also inhibits biofilm surface
attachment of certain dental plaque bacteria (Abdullah et al.,
2013) and may associate with the pathogenesis of periodontitis
and certain systemic diseases (Olsen et al., 2018). In this
study, we investigated the components of the secretome of
G. adiacens. We also obtained preliminary information on the
immunoinflammatory response induced by the secretome of
G. adiacens.

METHODS

Bacteria and Culture Conditions
Reference bacterial strain G. adiacens CCUG 27809 was
cultured on chocolate blood agar (CBA) with 0.001% pyridoxal
hydrochloride for 2 days at 37◦C and in 5% CO2 in air as we
previously reported (Christensen and Facklam, 2001; Karched
et al., 2015).

Extracellular Protein Release
A loopful (1 µl) of bacterial colonies harvested from CBA plates
were inoculated into 5ml brucella broth (supplemented with
0.001% pyridoxal hydrochloride) and incubated in 5% CO2

in air at 37◦C. No-bacteria control was incubated in parallel.
After 24 h (in exponential growth phase) broth cultures were
centrifuged at 5,000 ×g for 5min. Viability of bacteria was
checked by culturing a 100-µl aliquot on CBA. Supernatants
containing extracellularly released proteins were separated and
filtered through 0.2µm sterile filter to remove residual bacterial
cells. All experiments were performed in duplicates and were
repeated three times.

Preparation of Secretome
The replicates of extracellular proteins released in supernatant
broth samples were extracted by tri-chloroacetic acid (TCA)
precipitation method as described previously (Deatherage Kaiser
et al., 2015) with modifications. One volume of TCA stock
(100% w/v) was mixed with four volumes of supernatant
culture broth and incubated for 30min at −20◦C. Extracted
proteins in broth were recovered in pellet form by centrifugation
at 14,000 ×g for 20min at 4◦C on Beckman J2-M1 High-
Speed centrifuge. The pellet was washed twice with 0.5ml

cold acetone to remove traces of acid followed by complete
air-drying in a fume hood. Desalting of the samples was
achieved by diluting protein samples to 0.5ml volume (each
time) in lysis buffer and washing three times by ultrafiltration
through 3K Ultra-0.5 centrifugal filter devices (Amicon) at
14,000 ×g for 15min at 4◦C. Flow through were discarded
and concentrates in the columns were finally eluted from
columns in upside down position on collection tubes by
centrifugation at 1,000 ×g for 2min at 4◦C. A “no-bacteria”
broth control which was incubated in parallel was used as
negative control.

Bacterial Cell Lysate/Whole Cell
Protein Preparation
Harvested colonies from CBA plates were washed once in sterile
PBS, followed by centrifugation at 5,000 ×g for 5min. The
pellet recovered was resuspended in lysis buffer containing 1
mg/ml lysozyme and 1mM phenyl methyl sulfonyl fluoride
(PMSF) and incubated for 4 h at 4–8◦C. The samples were
then sonicated in Omni Ruptor at a pulse rate 40 for 8 times
(1min sonication with 1min interval on ice). Cell lysates after
sonication were centrifuged at 10,000 ×g for 10min at 4◦C.
Whole cell lysate of G. adiacens was prepared to use as a control
in western blot analysis along with extracellular protein extract of
the same.

Determination of Protein Concentration
Protein concentrations in extracellular protein extract and
cell lysate were estimated by Quick StartTM Bradford
protein microplate standard assay (Bio-Rad) as per
manufacturer instructions.

SDS-PAGE
For SDS-PAGE analysis, protein samples were mixed with 5×
Laemmli sample buffer (125mM tris, pH 6.8; 6% glycerol, 2%
SDS; 5% beta-mercapthoethanol; 0.025% bromophenol blue)
followed by boiling at 95◦C for 5min. After cooling at room
temperature, samples were loaded on a 15% SDS-PAGE gel [4%
stacking gel (4% acrylamide; 68mM tris, pH 6.8; 0.2% SDS), 15%
separating gel; 375mM tris, pH 8.8; 0.1% SDS]. Electrophoresis
was run at 150V for 75min (Mini-protein II Dual Slab Cell,
Bio Rad). After the run, protein bands were visualized using
coommassie blue.

Western Blot Analysis
To rule out the possibility of cell lysis of G. adiacens cells and
the release of cellular proteins in secretome preparations, western
blot analysis of whole cell lysate and secretome preparation was
performed. Proteins were transferred from the gel onto a PVDF
membrane using Trans-Blot R© TurboTM transfer system (Bio-
Rad). Membrane was blocked with 5% skimmed milk overnight
at 4◦C. An antibody against the cytoplasmic marker protein,
Ftsz (Filamenting temperature sensitive mutant z) (Agrisera AB,
Sweden) was used as a primary antibody at 1:1,000 dilution
and incubated on a shaker for 1 h at room temperature. The
membrane was then incubated as above with a peroxidase
conjugated goat antirabbit IgG F (ab’) 2 s Ab secondary antibody
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(1:5,000). The membrane was washed between each antibody
treatment with tris-buffer saline containing Tween-20 (TBST).
The membrane was finally treated with SuperSignalTM West Pico
chemiluminescence substrate (Pierce) and images were acquired
in G:Box Imaging System (Syngene).

nanoLC-ESI-MS/MS
Protein identification using nanoLC-ESI-MS/MS was performed
by Proteome Factory (Proteome Factory AG, Berlin, Germany).
The LC-MS system consisted of an Agilent 1100 nanoHPLC
system (Agilent, Waldbronn, Germany), PicoTip electrospray
emitter (New Objective, Woburn, MA) and an LTQ-FT
Ultra mass spectrometer (ThermoFisher Scientific, Bremen,
Germany). Replicate samples from secretome preparations
were pooled and 400 ng protein were reduced, alkylated
and digested by trypsin (Promega, Mannheim, Germany)
and applied to nanoLC-ESI-MS/MS. Peptides were trapped
and desalted on the enrichment column (Zorbax SB C18,
0.3 × 5mm, Agilent) for 5min using 1% acetonitrile/0.5%
formic acid as eluent, then peptides were separated on a
Zorbax 300 SB C18, 75µm × 150mm column (Agilent)
using an acetonitrile/0.1% formic acid gradient from 5 to
40% acetonitrile within 120min. MS spectra were automatically
recorded by the mass spectrometer according to manufacturer’s
instrument settings for nanoLC-ESI-MSMS analyses. Proteins
were identified by submitting all MS/MS spectra to the Mascot
search engine (Matrix Science, London, England) and non-
redundant protein database; NCBI-nr (National Center for
Biotechnology Information, Bethesda, USA, version 20151202)
and taxonomy Bacteria including 54,860,673 sequences. Ion
charge in search parameters for ions from ESI-MS/MS data
acquisition were set to “1+, 2+, or 3+.” Search parameters
were as following: Fixed modifications: Carbamidomethyl (C);
variable modifications: Deamidated (NQ), Oxidation (M);

Peptide Mass Tolerance: ± 5 ppm; Fragment Mass Tolerance:
± 0.6 Da; Missed Cleavages: 2. Only peptides matched with
a score of 20 or above were accepted and included in
protein identification.

Bioinformatics Analyses of the
Secreted Proteins
The signal peptides in the secreted proteins were determined
by using SignalP (http://www.cbs.dtu.dk/services/SignalP/)
(Bendtsen et al., 2004) Phobius (http://phobius.sbc.su.se/) (Kall
et al., 2007), and PSORTb (http://www.psort.org/psortb/) (Yu
et al., 2010) and a most-votes approach was used to interpret the
results. To identify lipoproteins, LipoP (http://www.cbs.dtu.dk/
services/LipoP/) and PRED-LIPO (http://bioinformatics.biol.
uoa.gr/PRED-LIPO/input.jsp) (Bagos et al., 2008) were used
to search for lipoboxes. TatP (http://www.cbs.dtu.dk/services/
TatP/) (Bendtsen et al., 2005b) and TatFind (http://signalfind.
org/tatfind.html) (Rose et al., 2002) were used to predict proteins
secreted via Twin-arginine translocation (Tat) pathway. To
identify proteins secreted by non-classical secretory system,
SecretomeP2.0 was used (http://www.cbs.dtu.dk/services/
SecretomeP/) (Bendtsen et al., 2005a). Proteins that were also
positive for signal peptide were disregarded. Transmembrane

alpha helices were predicted combining the tools TMHMM
v2.0 (http://www.cbs.dtu.dk/services/TMHMM/) (Krogh et al.,
2001), SVMtm (http://ccb.imb.uq.edu.au/svmtm/) (Yuan
et al., 2004), and SOSUI (http://harrier.nagahama-i-bio.ac.jp/
sosui/sosuiG/sosuigsubmit.html) (Hirokawa et al., 1998). A
theoretical 2-dimensional electrophoresis (2-DE) image of the
secreted proteins was acquired using the software JVirGel vs. 2.0
(Hiller et al., 2003).

For functional annotation of the secreted proteins, Gene
Ontology (GO) IDs and terms were assigned using the tool
“WEGO” (http://wego.genomics.org.cn/) (Ye et al., 2018) and
the program Blast2GO. Proteins with enzymatic functions,
possibly involved in metabolic pathways, were predicted by
KEGG Pathway Database (http://www.genome.jp/kegg/pathway.
html). Putative virulence proteins were predicted by the software
“VirulentPred” (http://203.92.44.117/virulent/) (Garg and Gupta,
2008), and by using Virulence Factor DataBase (VFDB, http://
www.mgc.ac.cn/VFs/) (Chen et al., 2016). The secreted proteins
were grouped into functional protein association networks
using STRING (https://string-db.org/) (von Mering et al., 2005).
MultitaskProtDB (http://wallace.uab.es/multitask) was used for
identifying “moonlighting proteins” in the G. adiacens secretome
(Hernández et al., 2014).

Isolation of Human Peripheral Blood
Mononuclear Cells (PBMCs)
Ethical approval for blood collection from a healthy human
volunteer was obtained from Health Science Center Ethical
Committee, Kuwait University. Peripheral blood mononuclear
cells (PBMCs) were isolated from the blood of a systemically
healthy human volunteer as described earlier (Fuss et al., 2009;
Bhardwaj et al., 2018). Blood was collected by venipuncture
into tubes containing heparin vacutainer (4ml /tube). PBMCs
were fractionated by Ficoll-Paque density gradient centrifugation
method. Under careful aseptic conditions, the blood was carefully
layered over the Ficoll-PaqueTMPlus (GE Healthcare) solution
in the test tube. The tube was centrifuged at 3,400 rpm at
room temperature for 10min and the resulting buffy coat layer
containing PBMCs was transferred to another clean tube. After
washing twice in 5ml of RPMI medium the tube was centrifuged
at 2,000 rpm for 5min to recover the cell pellet. The supernatant
was discarded and the cell pellet was finally resuspended in 1ml
of RPMI medium (supplemented with 10% heat-inactivated fetal
bovine serum and 2% of GibcoTM 100× antibiotic-antimycotic
solution). Cells were enumerated using 10 µl of homogenous
cell suspension in hemocytometer under ×400 magnification of
the microscope.

PBMCs Treatment With Secretome
PBMCs were stimulated with secretome preparations for 24 h.
One hundred microliter of the secretome preparation was added
into each well-containing 0.5ml of PBMCs (106 cells per ml).
The plate was incubated for 24 h in 5% CO2 in air at 37◦C.
PBS, which was the medium for secretome, was used as a
negative control.
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Cytokine Profiling Using the
Membrane Arrays
Cytokines produced by PBMCs on stimulation with G. adiacens
secretome were detected using a human cytokine array kit
(Proteome ProfilerTM Antibody Arrays R&D SystemsTM).
Nitrocellulose membrane with 36 selected capture antibodies
spotted in duplicate was used to determine the relative levels of
cytokines. The array membrane was blocked with assay buffer
for 1 h at room temperature to prevent non-specific binding.
The secretome-stimulated PBMC sample (1.5ml) was diluted in
assay buffer with 15 µl of reconstituted human cytokine array
detection antibody cocktail and incubated at room temperature
for 1 h. Following three washes in wash buffer, the array was
treated with streptavidin HRP for 30min at room temperature on
a rocking platform shaker. Washed array was finally incubated
with chemiluminescence reagent for 10min and images were
acquired in Syngene G:Box Imaging System. The positive signals
seen on the array were identified by comparing it with the
transparency overlay template with the pairs of reference spots

in three corners of each array. Pixel densities (signals) in each
spot on the array were collected, mean spot pixel density was
created and analyzed image analysis software provided with
G:Box Imaging System. The experiments were run in duplicates
and repeated three times.

RESULTS

Analysis of the Secretome of G. adiacens
Secretome preparation (Figure 1A) from G. adiacens was
analyzed by LC-MS/MS. Database search (NCBI-nr) revealed 101
proteins (Table S1). As depicted in a theoretical 2DE map of the

secretome, the MW of the secreted proteins ranged between 3.7

and 148 kDa (Figure 1B). The secretome proteins formed two

clusters with respect to predicted isoelectric point (pI) values.
Majority of the proteins belonged to the cluster with the pI range

of 4.0–5.5, while the other cluster was of the proteins between pI

values 9.5 and 11. To exclude the possibility that the secretome
preparation contained proteins that originated from bacterial

FIGURE 1 | Analysis of the secretome of G. adiacens. (A) SDS-PAGE gel showing protein bands from secretome preparation. (B) Protein sequences from LC-MS

analysis of the secretome were analyzed by an in silico 2DE tool. (C) Western blot analysis showing the absence of the cytoplasmic marker protein FtsZ in the

secretome preparation.
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cell lysis, we used in western blot analysis a cytoplasmic cell
lysis marker, Fts-Z protein, which was detected only in the total
protein preparation from G. adiacens but not in the secretome
preparation (Figure 1C). Further, plating of an aliquot of the
24-h broth culture confirmed the viability of bacteria during
the experiment. To determine subcellular localization of the 101
secreted proteins detected with LC-MS/MS, PsortB tool was used.
We found that 63 proteins were predicted to be cytoplasmic
(60%), 10 cytoplasmic membrane (9.6%), 6 extracellular (5.7%), 2
cell wall anchored (1.9%), whereas the localization of 23 proteins
(22%) could not be predicted.

Protein sequences of the secretome of G. adiacens were
analyzed for the route of their extracellular release by various
bioinformatics tools as described in the methods section. As
predicted by SignalP tool, 18 of the secreted proteins were
predicted to possess signal sequence, suggesting the “Sec”
pathway for their secretion. TatP prediction tool showed that
8 of the sequences contained TatP signal sequence. There were
a total of 9 lipoproteins (Pred-Lipo, LipoP) in the secretome.
Using the tool SecretomeP 2.0, 31 sequences were predicted to
be secreted via non-classical secretion pathway. However, since
15 of them contained a signal sequence and hence concluded
to be secreted via Sec pathway, those were discarded and only
16 proteins were finally considered to be secreted via non-
classical pathway. Transmembrane alpha helices were found in
9 proteins. Two of the 9 protein sequences that were predicted
to have at least 2 transmembrane domains were considered as
putatively membrane attached and therefore not included in
further analyses. Table 1 lists the 16 proteins from the secretome
which were identified as “moonlighting proteins.”

Potential Virulence Proteins in
G. adiacens Secretome
Virulence potential of the G. adiacens secretome was assessed
by manually searching for their associations with virulence

TABLE 1 | List of G. adiacens secretome proteins with a predicted moonlighting

function.

GI number Protein

gi|491802570 Serine protease

gi|491797953 Molecular chaperone DnaK

gi|491800441 Superoxide dismutase

gi|491800797 Glyceraldehyde-3-phosphate dehydrogenase

gi|491800365 NADH oxidase

gi|748591028 30S ribosomal protein S20

gi|491799730 Short-chain dehydrogenase

gi|491801600 50S ribosomal protein L7/L12

gi|491802592 30S ribosomal protein S6

gi|259036192 Thioredoxin

gi|50902517 SSU ribosomal protein S19P

gi|491801111 50S ribosomal protein L30

gi|491801148 Elongation factor Tu

gi|491801605 50S ribosomal protein L10

gi|491799115 50S ribosomal protein L32

gi|259035990 Phosphoglycerate kinase

activities in other species, since little is known of the
virulence factors of G. adiacens. Additionally, in silico prediction
of virulence factors was performed using the online tools
“VirulentPred” and “VFDB” (Virulence Factor DataBase).
Table 2 shows the list of 22 proteins from the secretome
that were deduced from in silico prediction and/or based on
evidence from the literature. Thioredoxin, serine proteinase,
aminopeptidase, molecular chaperones DnaK and GroES,
Superoxide dismutase, N-acetylmuramoyl-L-alanine amidase,
Glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate
kinase, and acyl carrier protein are the major proteins with
demonstrated virulence properties in other bacterial species.

Gene Ontology Analysis
Gene Ontology (GO) analysis of the amino acid FASTA
sequences of the G. adiacens secretome was achieved by using
the tools Blast2GO and WEGO. In the case of WEGO, the
XML file from InterPro analysis was used (Figure 2). Overall,
73 of the 104 sequences were assigned with GO annotation.
The secreted proteins were divided into 3 groups based on
GO terms: 63 proteins in “biological process,” 31 proteins in
the “cellular component” group, and 65 proteins in the group
“molecular function.”

KEGG Pathway Analysis
All protein sequences from the G. adiacens secretome were
subjected to KEGG pathway annotation and analysis (Figure 3).
Of all the pathways identified, 6 proteins were predicted to
be involved in the biosynthesis of antibiotics, followed by
5 proteins that occurred in the glycolysis pathway. Fructose
and mannose metabolism, and purine metabolism pathways
contained 3 proteins each. One of the secreted proteins,
transketolase, was predicted to be occurring in the biosynthesis
of ansamycins, a family of bacterial secondary metabolites with
antimicrobial activity.

Functional Protein Association
Network Analysis
As seen in Figure 4, G. adiacens secretome proteins formed three
major groups in the STRING network, i.e., sugar metabolism,
ribosomal proteins and heat shock proteins/chaperones.
Components of the sugar metabolism network were
phosphoglycerokinase, enolase, triose phosphate isomerase,
Fructose-1,6-bisphosphate aldolase, and phosphocarrier protein.
Putative virulence-associated proteins super oxide dismutase,
thioredoxin, molecular chaperones (DnaK, GroS, and GrpE)
NADH oxidase and HtrA, a trypsin-like protease, formed
another cluster. The ribosomal protein group consisted mainly
of the secreted ribosomal proteins (Figure 4).

Cytokine Stimulation by G. adiacens
Secretome Preparation
When human PBMCs were stimulated with G. adiacens
secretome preparation, semiquantitative analysis showed that
IL-1β and MCP-1 were the cytokines found at highest relative
quantities, followed by TNF-α and RANTES (Figure 5). Other
important cytokines detected were IL-8, IL-6, G-CSF, GM-CSF,
MIP1-α, and MIP1-β. When the PBMCs were stimulated with
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TABLE 2 | Putative virulence factors identified in G. adiacens secretome.

GI number Protein In silico prediction Literature evidence

gi|491802570 Serine protease Yes Yes (Ruiz-Perez and Nataro, 2014)

gi|491801087 Aminopeptidase Yes Yes (Carroll et al., 2012)

gi|491800441 Superoxide dismutase Yes Yes (Gerlach et al., 1998)

gi|491797953 Molecular chaperone DnaK Yes Yes (Goulhen et al., 1998)

gi|259036192 Thioredoxin Yes Yes (Bjur et al., 2006)

gi|491800365 NADH oxidase No Yes (Ge et al., 2016)

gi|491798572 N-acetylmuramoyl-L-alanine amidase Yes Yes (Romero et al., 2004)

gi|491800929 Molecular chaperone GroES Yes Yes (Hinode et al., 1995)

gi|491800797 Glyceraldehyde-3-phosphate dehydrogenase Yes Yes (Lu et al., 2009)

gi|491797310 Acyl carrier protein Yes Yes (Feng et al., 2015)

gi| 259036239 Phosphocarrier protein No Yes (Dubreuil et al., 1996)

gi|259035990 Phosphoglycerate Kinase No Yes

gi|491799853 DNA starvation/stationary phase protection protein Yes Yes (Loprasert et al., 2004)

gi|491800219 CHAP domain-containing protein Yes Yes (Zhong et al., 2014)

gi|491801017 LysM peptidoglycan-binding domain-containing protein Yes Yes (Shi et al., 2016)

gi|491796985 YlbF family regulator Yes Yes (Tortosa et al., 2000)

gi|491798894 CsbD family protein Yes Yes (Lanotte et al., 2013)

WP_049555432 PTS ascorbate transporter subunit II Yes Yes (Afzal et al., 2015)

gi|259035249 WXG100 family type VII secretion target Yes Yes (Pallen, 2002)

gi|491797708 Cysteine desulfurase Yes Yes (Großhennig et al., 2016)

gi|491798949 Agglutinin receptor Yes No

gi|259035137 YbaB/EbfC family protein Yes Yes (Jutras et al., 2012)

total proteins of G. adiacens, CCL-1, CCL2 (MCP-1), and G-CSF
were not detected (data not shown).

DISCUSSION

While protein secretion is a well-established virulence
mechanism in bacteria, little is known of the secretome of
G. adiacens. Recently, G. elegans, a close phylogenetic relative of

G. adiacens, was shown to secrete arginine deaminase (Kanamoto
et al., 2007), a citrullinating enzyme that was shown to inhibit
proliferation of human PBMCs in vitro and may associate with

pathogenesis of periodontal and certain systemic diseases (Olsen
et al., 2018). In this study, we took a qualitative proteomics
approach to obtain a protein profile of the G. adiacens secretome.
Since the objective of this study was to identify the proteins in
the G. adiacens secretome by mass spectrometry, qualitative
proteomics was adequate (Zijnge et al., 2012; Bao et al., 2015,
2017; Mohammed et al., 2017; Suriyanarayanan et al., 2018)
without the necessity for validating the identified proteins
as is the case for quantitative proteomics. We found that the
secretome was enriched with a large number of putative virulence
factors utilizing various bioinformatics analysis tools, we were
able to characterize most of the secretome proteins in silico. The
secretome proteins were predicted to be released via various
secretion systems such as, sec-dependent, Tat pathway and via a
non-classical secretory system.

To rule out the possibility of contamination of the secretome
with subcellular proteins we used an established cytoplasmic

marker protein Fts-Z (Terrasse et al., 2015) which remained
absent in all G. adiacens secretome preparations.

By combining in silico analysis with experimental evidence

and available bibliography, we were able to identify more
than 20 putative virulence-associated proteins in G. adiacens
secretome. This is in line with secretomes of other much-
studied oral bacteria such as A. actinomycetemcomitans (Zijnge
et al., 2012) and Porphyromonas gingivalis (Stobernack et al.,
2016) Remarkably, several well-known virulence factors in
other bacteria, such as serine protease, thioredoxin, superoxide
dismutase, phosphocarrier and acyl carrier proteins were also
detected in the G. adiacens secretome. Superoxide dismutase
converts superoxide anions into oxygen and hydrogen peroxide.
In streptococci, superoxide dismutase is displayed on the cell
surface as well as released extracellularly (Gerlach et al., 1998;
McMillan et al., 2004). Since G. adiacens is a catalase-negative
organism, SODmight play an important role in the detoxification
of oxidative burst against them by the host cells. G. adiacens
apparently is equipped with more strategies to survive during
oxidative stress. Indeed, gpoA gene, encoding for glutathione
peroxidase was found in G. adiacens genome (Sequence ID
WP_005604890.1). Superoxide dismutase is required not only for
H2O2 resistance in S. mutans, but also is needed for coexistence
with S. sanguinis (Fujishima et al., 2013). Whether SOD plays
such a role in G. adiacens needs to be studied.

Virulence potential of several other proteins in G. adiacens
secretome has been studied previously. For example, S. mutans,
S. sanguinis and other species require NADH oxidase for
biofilm formation (Ge et al., 2016). Streptococci secrete
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FIGURE 2 | Gene Ontology analysis of G. adiacens secreted proteins. Gene ontology annotation was achieved using Blast2GO and an online software “WEGO.”

Protein sequences were grouped into 3 categories based on their properties and functions.

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is
known to help during bacterial invasion (Nelson et al., 2001).
Serine proteases cause cytopathic effects and exhibit enterotoxin
activity. They degrade mucins, including leukocyte surface
O-glycoproteins with vital roles in numerous cellular functions,
resulting in advantage for mucosal colonization and immune
modulation (Dutta et al., 2002; Ruiz-Perez et al., 2011; Ruiz-
Perez and Nataro, 2014). In Salmonella enterica, thioredoxin
helps the bacterium in intracellular replication and virulence in a
mouse model (Bjur et al., 2006). Serine protease of Fusobacterium
nucleatum and S. mutans are shown to be critical in the survival
and pathogenicity of these species (Diaz-Torres and Russell,
2001; Doron et al., 2014). Thus, it would be of great interest to
study how G. adiacens utilizes this arsenal of putative virulence
proteins for its own survival and to cause an infection.

Although G. adiacens secretome comprised of many proteins
of cytoplasmic origin according to the prediction tools,
interestingly, several of these belong to a so-called group
“moonlighting proteins” (Jeffery, 1999; Henderson and Martin,
2014), which have a known function inside the bacterial cell
but also participate in different biological processes in the

extracellular medium after their secretion. That G. adiacens
secretome consisted of several moonlighting proteins is of great
significance since they are shown to play a role in bacterial
virulence (Henderson and Martin, 2011; Wang et al., 2014).
Major ribosomal proteins detected in G. adiacens secretome
were 50S proteins L10, L11, L7/L12, L15, L32, and 30S proteins
S5, S6, S8, and S20. Importantly, in other bacteria ribosomal
protein L7/L12 is highly antigenic and immunogenic (Oliveira
and Splitter, 1996; Ribeiro et al., 2002). Of the glycolytic enzymes,
phosphoglycerate kinase, triose-phosphate isomerase, aldolase,
and enolase possess moonlighting properties, e.g., they function
as adhesins (Tunio et al., 2010), receptors for transferrin (Modun
et al., 2000), neutrophil evasion proteins (Terao et al., 2006),
immunomodulators (Madureira et al., 2007) and participate
in extracellular polysaccharide synthesis (Lu et al., 2009) Oral
bacteria express a number of molecular chaperones, including
DnaK (hsp60) and GroES (GroEL) found in G. adiacens
secretome. They express on the cell surface to use them as
adhesins and can release them into the extracellular milieu to act
as signaling virulence factors (Hinode et al., 1995; Goulhen et al.,
1998; Henderson et al., 2006). The multifunctioning potential
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FIGURE 3 | KEGG pathway analysis of the G. adiacens secretome. All protein sequences from the secretome were analyzed by KEGG pathway tool, which was

included as a “plugin” tool within Blast2GO software.

of moonlighting proteins may help G. adiacens propagate in its
natural habitats as well as in sterile body areas.

More than 60 of G. adiacens secretome proteins were
grouped into biological processes and molecular functions
ontology groups. When we obtained GO annotations for the G.
adiacens whole genome, we found that about 1,000 predicted
proteins were grouped into “molecular functions,” followed
by about 900 and 400 proteins in the groups “biological
processes” and “cellular composition,” respectively (data not
shown). The secretome proteins mapped to 19 different KEGG
pathways, with antibiotic biosynthesis and glycolysis being
most represented. The antibiotic biosynthesis pathway consisted
of the enzymes phosphopyruvate hydratase, transketolase,
glycolaldehyde transferase, triosephosphate isomerase, aldolase,
and phosphoglycerate kinase, several of which have been
experimentally shown to be essential for antibiotic biosynthesis
(Barnard-Britson et al., 2012; Liu et al., 2016). Other prominent
pathways were purine metabolism, fructose metabolism and
aminobenzene degradation. These results suggest that G.
adiacens secretome proteins with metabolic activities might help
the bacterium in utilizing nutrients available in the extracellular
milieu (Cezairliyan and Ausubel, 2017).

Functional associations among the secreted proteins using
STRING network analysis showed three distinct network

groups, i.e., sugar metabolism, ribosomal proteins, and putative
virulence factors. Enzymes involved in sugar metabolism,
i.e., phosphoglycerate kinase, triose-phosphate isomerase, 2-
phosphoglycerate dehydratase, transketolase formed a cluster.
Several of these enzymes seem to have overlapping functions, i.e.,
they were also involved in antibiotic biosynthesis as predicted
by KEGG. In the cluster that consisted of putative virulence
factors, molecular chaperone DnaK showed interactions with
other chaperones GrpE, GroS, thioredoxin, and PPlase. This
group also showed interactions with other virulence factors
such as superoxide dismutase and trypsin-like protein HtrA.
Molecular chaperones aid bacterial pathogenesis by helping
bacteria in coping with stressful host environment, e.g.,
acidified phagosome, oxidative burst, and phagosome fusion
with lysosomes (Hosogi and Duncan, 2005). Further, chaperones
are potent immunogens and possess direct activating effect on
different cell populations including lymphoid, myeloid, vascular
endothelial and bone cells (Lewthwaite et al., 1998).

In several pathogenic bacteria, secreted proteins are known
to modulate host immune responses (Finlay and Falkow, 1997;
Lee and Schneewind, 2001). To get preliminary knowledge of the
cytokine stimulatory potential of the G. adiacens secretome, we
used human PBMCs as target host cells. Major cytokines such
as IL-1β, TNF-α, MCP-1 were found at high levels as evidenced
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FIGURE 4 | Functional protein association networks of G. adiacens secretome. The online tool STRING was used for grouping the secreted proteins on the basis of

functional networks. Minimum interaction scores were set at a strong confidence level of 0.7. The three major network groups formed are shown in dotted circles.

Seven different colored link a number of nodes and represent seven types of evidence used in predicting associations. A red line indicates the presence of fusion

evidence; a green line represents neighborhood evidence, a blue line represents co-occurrence evidence; a purple line represents experimental evidence; a yellow line

represents textmining evidence; a light blue line represents database evidence and a black line represents coexpression evidence.

by higher signal densities than the reference spots. Although
cytokine induction of PBMCs from total protein preparation
from G. adiacens was similar, MCP-1 and G-CSF were absent.
This was also observed in our previous study where biofilms
failed to stimulate these cytokines but the biofilm supernatants
did (Bhardwaj et al., 2018). While secreted components of
different bacterial species have been previously shown to elicit
inflammatory response from host cells (Oscarsson et al., 2008;
Dapunt et al., 2016), a protein of Brucella suis was able to
inhibit TNF-α production from macrophages when it was
released extracellularly (Caron et al., 1996). Therefore, specific
stimulation of certain cytokines by secreted proteins, but not the
total bacterial proteins, is suggestive of possible mechanisms G.
adiacensmight use for systemic stimulation.

In conclusion, we unraveled the secretome of G. adiacens, an
oral bacterium well-documented in infective endocarditis, but
also recently shown to be involved in oral infections. Importantly,
the secretome of G. adiacens comprised of a large number
of putative virulence factors. Of particular importance is the
finding that the G. adiacens secretome comprised of a number
of “moonlighting” proteins, which in other species are shown
to enhance bacterial colonization and virulence through their
multifunctional roles (Pavkova et al., 2017; Graf et al., 2019).
Thus, our results provide a basis for investigating the role of
secreted proteins of G. adiacens in oral infections as well as in
infective endocarditis.

FIGURE 5 | Cytokine induction from human PBMCs by G. adiacens

secretome preparation. Fractionated human PBMCs were stimulated by G.

adiacens secretome preparation for 24 h. The cytokines produced were

detected by using Proteome ProfilerTM membrane array. Means (SD) of signal

densities of spots were determined using Gene Tools analysis software in

Syngene Imaging System.
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