20 research outputs found
Plasmon-phonon hybridization in layered structures including graphene
We present a method to introduce several graphene sheets into the non-retarded Greenβs function for a layered structure containing polar insulators, which support transverse optical phonon modes. Dispersion relations are derived to illustrate hybridization of Dirac plasmons in two graphene sheets with phonon modes in an oxide spacer layer between them.28th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2016, August 29 - September 2, 2016, Belgrad
Wake effect due to excitation of plasmon-phonon hybrid modes in a graphene-sapphire-graphene structure by a moving charge
We study the wake effect due to excitation of a plasmon-phonon hybrid mode in a sandwich-like structure consisting of two doped graphene sheets, separated by a layer of Al2O3 (sapphire), which is induced by an external charged particle moving parallel to the structure.29th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2018, August 28 - September 1, 2018, Belgrade
Stopping force acting on a charged particle moving over a drift-current biased supported graphene
In our recent publication we investigated the impact of plasmon-phonon hybridization on the stopping force acting on a charged particle moving parallel to a sandwich-like structure consisting of two graphene sheets separated by a layer of sapphire. In this work we evaluate the stopping force on a charged particle moving parallel to a graphene layer biased with a drift electric current supported by an insulating substrate. The dielectric function of the system is written in terms of the response function of graphene and the bulk dielectric function of the substrate. Focusing on the range of frequencies from THz to mid-infrared, the response function is expressed in terms of a frequency-dependent conductivity of graphene. The conductivity with a drift current is evaluated using the Galilean Doppler shift model. The energy loss function (the imaginary part of the negative value of the inverse dielectric function) and the stopping force are presented in the cases without and with drifting electrons, showing the effects of the drift velocity on the plasmon-phonon hybridization. The stopping force is also calculated when the drift and electron beam velocities have the same and opposite signs.Catalysts for water splitting and energy storage, April 3-5th, 2024 ; Vienna, AustriaLink to the conference website: [https://web.archive.org/web/20240409120751/http://dollywood.itp.tuwien.ac.at/~florian/Vienna_April2024/
Wake effect in interactions of ions with graphene-sapphire-graphene structure
In our recent publication1 we have studied the wake potential induced by an external charged particle that moves parallel to various sy1-Al2O3-sy2 composites, where syi (with i=1,2) may be vacuum, pristine graphene, or doped graphene. Several important parameters were fixed at their respective typical values: the distance of the charged particle from the closest surface, the thickness of the sapphire (aluminum oxide, Al2O3) layer, and the doping density (i.e., Fermi energy) of graphene. In this work we present a detailed study of the effects due to variations of all those parameters in the case of the wake potential produced by charged particle moving parallel to the graphene-Al2O3- graphene composite system, by using the dynamic polarization function of graphene within the random phase approximation for its Ο electrons described as Diracβs fermions and by using a local dielectric function for the sapphire layer2 . For the velocity of the charged particle below the threshold for excitations of the Dirac plasmon in graphene, given by its Fermi velocity vF, strong effects are observed due to variation of the particle distance, while for the velocity of the charged particle above vF strong effects are observed due to varying the thickness of the Al2O3 layer, as well as due to graphene doping
The influence of dynamic polarization on charged particles interaction with carbon nanotubes in two - fluid hydrodynamic model
Π£ ΠΎΠ²ΠΎΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠΈ ΡΠ΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΡΠΈΡΠ°Ρ Π΅ΡΠ΅ΠΊΠ°ΡΠ° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ΅ ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ΅ Π½Π° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ΅ Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΠΊΡΠΎΠ· ΡΠ°Π·Π»ΠΈΡΠΈΡΠ΅ ΡΠΈΠΏΠΎΠ²Π΅ ΡΠ΅Π΄Π½ΠΎΡΠ»ΠΎΡΠ½ΠΈΡ
ΡΠ³ΡΠ΅Π½ΠΈΡΠ½ΠΈΡ
Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ (SWNT). ΠΠ° ΠΏΠΎΡΠ΅ΡΠΊΡ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΠ΅ ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ° Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΡΠ° ΡΠ΅ΡΠΈΡΠΈ ΡΠ°Π·Π»ΠΈΡΠΈΡΠ° ΡΠΈΠΏΠ° Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ Ρ ΠΎΠΊΠ²ΠΈΡΡ Π»ΠΈΠ½Π΅Π°ΡΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ ΡΠ΅Π΄Π½ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. Π’ΠΈΠΏΠΎΠ²ΠΈ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΊΠΎΡΠΈ ΡΠ΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ°ΡΡ ΡΡ SWNT(6, 4), SWNT(8, 6), SWNT(11, 9) ΠΈ SWNT(15, 10). ΠΠΎΠΌΠ΅Π½ΡΡΠΈ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠ΅ Π·Π° ΡΠ°ΡΡΠ½Π°ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° Π³Π΄Π΅ ΡΠ΅ Π½Π° ΡΠ°Ρ Π½Π°ΡΠΈΠ½ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΡΠΈΡΠ°Ρ Π½Π° ΠΊΡΠ΅ΡΠ°ΡΠ΅ Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° Π΄ΡΠΆ ΠΏΡΡΠ°ΡΠ΅ ΠΏΠ°ΡΠ°Π»Π΅Π»Π½Π΅ ΡΠ° ΠΎΡΠΎΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. ΠΡΠ·ΠΈΠ½Π΅ ΠΊΡΠ΅ΡΠ°ΡΠ° ΠΏΡΠΎΡΠΎΠ½Π° ΡΠ΅ ΡΠ·ΠΈΠΌΠ°ΡΡ Ρ ΠΎΠΏΡΠ΅Π³Ρ ΠΎΠ΄ 1 Π΄ΠΎ 10 a.u.. ΠΡΠΎΡΠΎΠ½ ΡΡΠ΅Π΄ΡΠ΅ ΠΊΠΈΠ½Π΅ΡΠΈΡΠΊΠ΅ Π΅Π½Π΅ΡΠ³ΠΈΡΠ΅ (ΡΠ΅Π΄Π° MeV) ΠΈΠ·Π°Π·ΠΈΠ²Π° ΠΏΠΎΡΠ°Π²Ρ ΡΠ½Π°ΠΆΠ½Π΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ΅ ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ΅ Π²Π°Π»Π΅Π½ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π° Π½Π° ΠΎΠΌΠΎΡΠ°ΡΡ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΡΡΠΎ ΠΊΠ°ΠΎ Π΅ΡΠ΅ΠΊΠ°Ρ ΠΈΠΌΠ° ΠΈΠ½Π΄ΡΠΊΠΎΠ²Π°ΡΠ΅ Π·Π½Π°ΡΠ°ΡΠ½Π΅ ΡΠΈΠ»Π΅ Π»ΠΈΠΊΠ° Π½Π° ΠΏΡΠΎΡΠΎΠ½, ΠΎΠ΄Π½ΠΎΡΠ½ΠΎ ΠΏΠΎΡΠ°Π²Ρ Π³ΡΠ±ΠΈΡΠ°ΠΊΠ° Π΅Π½Π΅ΡΠ³ΠΈΡΠ΅ ΡΡΠ»Π΅Π΄ Π΅ΠΊΡΡΠΈΡΠ°ΡΠΈΡΠ΅ ΠΏΠΎΠΌΠ΅Π½ΡΡΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π°. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ΅ Π΄Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ° ΡΠΈΠ»Π° Π»ΠΈΠΊΠ° ΠΈΠ·Π°Π·ΠΈΠ²Π° ΡΠ½Π°ΠΆΠ°Π½ ΡΡΠΈΡΠ°Ρ Π½Π° ΡΠ³Π°ΠΎΠ½Ρ ΡΠ°ΡΠΏΠΎΠ΄Π΅Π»Ρ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΠΏΡΠΎΡΠΎΠ½Π° ΠΊΡΠΎΠ· ΠΊΡΠ°ΡΠΊΠ΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²ΡΠ΅Π½ΠΎ ΡΠ΅ Π΄Π° ΡΡ ΠΎΠ²Π΅ Π½ΠΎΠ²Π΅ ΠΏΠΎΡΠ°Π²Π΅ ΠΏΠΎΡΠ΅Π±Π½ΠΎ ΠΈΠ·ΡΠ°ΠΆΠ΅Π½Π΅ ΠΊΠ°Π΄Π° ΡΠ΅ Π±ΡΠ·ΠΈΠ½Π° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΠΏΠΎΠΊΠ»Π°ΠΏΠ° ΡΠ° ΡΠ°Π·Π½ΠΎΠΌ Π±ΡΠ·ΠΈΠ½ΠΎΠΌ ΠΊΠ²Π°Π·ΠΈΠ°ΠΊΡΡΡΠΈΡΠ½ΠΎΠ³ Ο ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π°. ΠΠ½Π°Π»ΠΈΠ·Π° ΡΠ΅ ΡΠΊΡΡΡΠΈΠ»Π° Π³Π΅Π½Π΅ΡΠΈΡΠ°ΡΠ΅ Π½ΡΠΌΠ΅ΡΠΈΡΠΊΠΈΡ
ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠ° ΠΊΠΎΡΠΈΠΌΠ° ΡΠ΅ ΠΏΡΠΈΠΊΠ°Π·Π°Π½ ΡΡΠΈΡΠ°Ρ ΡΠ°ΠΊΡΠΎΡΠ° ΠΏΡΠΈΠ³ΡΡΠ΅ΡΠ°, ΡΠ°Π΄ΠΈΡΡΡΠ° Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΈ ΠΏΠΎΡΠ΅ΡΠ½Π΅ ΠΏΠΎΠ·ΠΈΡΠΈΡΠ΅ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½Π΅ ΡΠ΅ΡΡΠΈΡΠ΅ Π½Π° ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ° ΡΠ½ΡΡΠ°Ρ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. ΠΠ·Π²ΡΡΠ΅Π½ΠΎ ΡΠ΅ ΠΏΠΎΡΠ΅ΡΠ΅ΡΠ΅ Π΄ΠΎΠ±ΠΈΡΠ΅Π½ΠΈΡ
ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠ° Π·Π° ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ° Π·Π° ΡΠ»ΡΡΠ°Ρ ΡΠ΅Π΄Π½ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° Π·Π° ΡΠ°Π·Π»ΠΈΡΠΈΡΠ΅ ΡΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. Π’Π°ΠΊΠΎΡΠ΅ ΡΠ΅ ΠΈΠ·Π²ΡΡΠ΅Π½Π° ΡΠ°ΡΡΠ½Π°ΡΡΠΊΠ° ΡΠΈΠΌΡΠ»Π°ΡΠΈΡΠ° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ° ΡΠ΅ΡΡΠΈΡΠ° ΠΊΠ°ΠΎ ΠΈ ΠΏΠΎΡΠ΅ΡΠ΅ΡΠ΅ ΠΏΡΠΎΡΡΠΎΡΠ½Π΅ ΠΈ ΡΠ³Π°ΠΎΠ½Π΅ ΡΠ°ΡΠΏΠΎΠ΄Π΅Π»Π΅ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° Ρ ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΌΠ΅Π½ΡΡΠΈΡ
Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈΡ
ΠΌΠΎΠ΄Π΅Π»Π°. Π£ Π½Π°ΡΡΠ°Π²ΠΊΡ ΡΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠ° ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ° ΠΏΡΠΎΡΠΎΠ½Π° ΡΠ° SWNT(6, 4) Π³Π΄Π΅ ΡΠ΅ ΡΠ·ΠΈΠΌΠ°ΡΡ Ρ ΠΎΠ±Π·ΠΈΡ Π΅ΡΠ΅ΠΊΡΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ΅ ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ΅ Ρ ΠΎΠΊΠ²ΠΈΡΡ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ ΠΏΡΠΎΡΠΈΡΠ΅Π½ΠΎΠ³ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. ΠΠ²Π°Ρ ΠΌΠΎΠ΄Π΅Π» ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠΈ Π·Π° Π°Π½Π°Π»ΠΈΡΠΈΡΠΊΠΎ ΠΈ Π½ΡΠΌΠ΅ΡΠΈΡΠΊΠΎ ΡΠ°ΡΡΠ½Π°ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° ΠΈ Π·Π°ΡΡΡΠ°Π²Π½Π΅ ΡΠΈΠ»Π΅ Π½Π° ΠΏΡΠΎΡΠΎΠ½ ΠΊΠΎΡΠΈ ΡΠ΅ ΠΊΡΠ΅ΡΠ΅ ΠΏΠ°ΡΠ°Π»Π΅Π»Π½ΠΎ ΡΠ° ΠΎΡΠΎΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ Ρ ΡΠ»ΡΡΠ°ΡΠ΅Π²ΠΈΠΌΠ° ΠΊΠ°Π΄Π° ΡΠ΅ ΡΡΠ°ΡΠ΅ΠΊΡΠΎΡΠΈΡΠ° ΡΠ΅Π³ΠΎΠ²ΠΎΠ³ ΠΊΡΠ΅ΡΠ°ΡΠ° ΡΠ½ΡΡΠ°Ρ ΠΈ Π²Π°Π½ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. ΠΠΏΡΠ΅Π³ Π±ΡΠ·ΠΈΠ½Π° ΠΊΠΎΡΠΈ ΡΠ΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΠ΅ ΠΎΠ΄ 0.5 Π΄ΠΎ 15 a.u.. Π Π°Π·ΠΌΠ°ΡΡΠ° ΡΠ΅ ΡΡΠΈΡΠ°Ρ Π΅ΡΠ΅ΠΊΠ°ΡΠ° ΡΠ°Π·Π»ΠΈΡΠΈΡΠΈΡ
ΡΠ³Π°ΠΎΠ½ΠΈΡ
ΠΌΠΎΠ΄ΠΎΠ²Π° Π½Π° Π·Π°Π²ΠΈΡΠ½ΠΎΡΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° ΠΎΠ΄ Π±ΡΠ·ΠΈΠ½Π΅ ΠΏΡΠΎΡΠΎΠ½Π° Π·Π° ΡΠ°Π·Π»ΠΈΡΠΈΡΠ΅ ΡΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. Π’Π°ΠΊΠΎΡΠ΅ ΡΠ΅ ΡΠ°ΡΡΠ½Π° ΠΏΡΠΎΡΡΠΎΡΠ½Π° ΠΈ ΡΠ³Π°ΠΎΠ½Π° Π΄ΠΈΡΡΡΠΈΠ±ΡΡΠΈΡΠ° ΠΏΡΠΎΡΠΎΠ½Π° Ρ ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠΎΡΠΈΡΠ΅Π½ΠΎΠ³ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° ΠΈ ΠΏΠΎΡΠ΅Π΄ΠΈ ΡΠ° ΡΠ»ΡΡΠ°ΡΠ΅ΠΌ ΠΎΠ±ΠΈΡΠ½ΠΎΠ³ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° ΡΠ° Π½ΡΠ»ΡΠΈΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠΌ ΠΏΡΠΈΠ³ΡΡΠ΅ΡΠ°.
ΠΠ° ΠΊΡΠ°ΡΡ ΡΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠ° ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ° Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΡΠ° ΠΏΡΠ°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡΠΈΠ²ΡΠ΅Π½ΠΈΠΌ ΡΠ΅Π΄Π½ΠΎΡΠ»ΠΎΡΠ½ΠΈΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈΠΌΠ° ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΌΠ° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ° ΠΊΠ°Π΄Π° ΡΠ΅ ΡΡΠ°ΡΡΠ½Π°ΡΠ° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ° ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ° Π²Π°Π»Π΅Π½ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π° ΡΠ³ΡΠ΅Π½ΠΈΠΊΠ°. ΠΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ° ΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½Π° Π»ΠΈΠ½Π΅Π°ΡΠΈΠ·ΠΎΠ²Π°Π½ΠΈΠΌ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΈΠΌ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΎΠΌ ΡΠ° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΠΌΠ° ΠΎΠ΄ΡΠ΅ΡΠ΅Π½ΠΈΠΌ ΠΈΠ· Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠ½ΠΈΡ
Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½Π°ΡΠ° Ρ Π²Π΅Π·ΠΈ ΡΠ° ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠΎΠΌ Π³ΡΠ±ΠΈΡΠ°ΠΊΠ° Π΅Π½Π΅ΡΠ³ΠΈΡΠ΅ Ρ ΡΠ³ΡΠ΅Π½ΠΈΡΠ½ΠΈΠΌ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠ°ΠΌΠ°. Π₯ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠΈ Π·Π° ΠΈΠ·ΡΠ°ΡΡΠ½Π°Π²Π°ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° ΠΈΠ½Π΄ΡΠΊΠΎΠ²Π°Π½ΠΎΠ³ ΠΊΡΠ΅ΡΠ°ΡΠ΅ΠΌ ΠΏΡΠΎΡΠΎΠ½Π° ΠΊΡΠΎΠ· ΡΠ΅ΡΠΈΡΠΈ ΠΏΠΎΠΌΠ΅Π½ΡΡΠ° ΡΠΈΠΏΠ° Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΏΡΠΈ Π±ΡΠ·ΠΈΠ½ΠΈ ΠΎΠ΄ 3 Π°ΡΠΎΠΌΡΠΊΠ΅ ΡΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ° ΡΠ΅ ΠΏΠΎΡΠΎΠΌ Π΄ΠΎΠ΄Π°ΡΠ΅ Π½Π° ΠΠΎΡΠ»-Π’Π°ΡΠ½Π΅ΠΎΠ² Π°ΡΠΎΠΌΡΠΊΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Ρ ΡΠΈΡΡ Π΄ΠΎΠ±ΠΈΡΠ°ΡΠ° ΡΠΊΡΠΏΠ½ΠΎΠ³ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Ρ ΠΏΡΠ°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡΠΈΠ²ΡΠ΅Π½ΠΈΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈΠΌΠ°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Ρ ΠΎΠ²ΠΈΡ
ΠΏΡΠΎΡΠ°ΡΡΠ½Π° ΡΠΈΠΌΡΠ»ΠΈΡΠ° ΡΠ΅ ΠΏΡΠΎΡΠ΅Ρ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ° ΠΏΡΠΎΡΠΎΠ½ΡΠΊΠΎΠ³ ΡΠ½ΠΎΠΏΠ° ΠΈ ΠΎΠ΄ΡΠ΅ΡΡΡΠ΅ ΠΏΡΠΎΡΡΠΎΡΠ½Π° ΠΈ ΡΠ³Π°ΠΎΠ½Π° ΡΠ°ΡΠΏΠΎΠ΄Π΅Π»Π° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΠΏΡΠΎΡΠΎΠ½Π° ΠΊΡΠΎΠ· Π·Π°ΠΊΡΠΈΠ²ΡΠ΅Π½Π΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΈ ΠΏΠΎΡΠ΅Π΄Π΅ Π΄ΠΎΠ±ΠΈΡΠ΅Π½ΠΈ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ ΡΠ° ΡΠ»ΡΡΠ°ΡΠ΅ΠΌ ΠΊΠ°Π΄Π° ΡΠ΅ Π½Π΅ ΡΠ·ΠΈΠΌΠ° Ρ ΠΎΠ±Π·ΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ° ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ° ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ°.In this dissertation the effects of dynamic polarization on charged particles channeling through various types of single β walled carbon nanotubes (SWNTs) are studied. At the very beginning of the analyze the interactions of charged particles with 4 different types of SWNTs by means of linearized two dimensional one and two fluid hydrodynamic models are studied. Types of SWNTs are (6, 4), (8, 6), (11, 9) and (15, 10). The models are used to calculate the image potential for a charged particle moving parallel to the axis of the SWNTs. Proton speeds between 1 and 10 a.u. are chosen. A proton that moves with average energy (MeV) will induce a strong dynamic polarization of valence electrons in the nanotubes which in turn will give rise to a sizeable image force on the proton, as well as a considerable energy loss due to the collective, or plasma, excitations of those electrons. The dynamic image force was shown to exert large influence in the angular distributions of protons channelled through short SWNTs. It is found that these quantities exhibit novel features when the particle speed matches the phase velocity of the quasiacoustic Ο plasmon. Numerical results are obtained to show the influence of the damping factor, the nanotube radius, and the particle position on the image potential inside the nanotube. Results for image potential in the one and two fluid hydrodynamic models are compared for different types of nanotubes. The spatial and angular distributions of protons are also computed and compared for the two models. After that, we study the interaction of charged particles with a SWNT(6, 4) under channelling conditions by means of the linearized, two dimensional (2D), two-fluid extended hydrodynamic model. We use the model to calculate analytically and numerically the image potential and the stopping force for a proton moving parallel to the axis of the SWNT, both inside and outside the nanotube at the speeds from 0.5 a.u. to 15 a.u.. The effects of different angular modes on the velocity dependence of the image potential are compared for a proton moving in different types of SWNTs. We also compute the spatial and angular distributions of protons in the 2D two-fluid extended hydrodynamic model and compare them with the 2D two-fluid hydrodynamic model with zero damping. At the end we investigate the interaction of charged particles with straight and bent single-walled carbon nanotubes under channelling conditions in the presence of dynamic polarization of the valence electrons in carbon nanotube wall. This polarization is described by a linearized, two-fluid hydrodynamic model with the parameters taken from recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nanostructures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at the speed of 3 atomic units. The image potential is then combined with the Doyle-Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Based on that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential
The influence of dynamic polarization on charged particles interaction with carbon nanotubes in two - fluid hydrodynamic model
Π£ ΠΎΠ²ΠΎΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠΈ ΡΠ΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΡΠΈΡΠ°Ρ Π΅ΡΠ΅ΠΊΠ°ΡΠ° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ΅ ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ΅ Π½Π° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ΅ Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΠΊΡΠΎΠ· ΡΠ°Π·Π»ΠΈΡΠΈΡΠ΅ ΡΠΈΠΏΠΎΠ²Π΅ ΡΠ΅Π΄Π½ΠΎΡΠ»ΠΎΡΠ½ΠΈΡ
ΡΠ³ΡΠ΅Π½ΠΈΡΠ½ΠΈΡ
Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ (SWNT). ΠΠ° ΠΏΠΎΡΠ΅ΡΠΊΡ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΠ΅ ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ° Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΡΠ° ΡΠ΅ΡΠΈΡΠΈ ΡΠ°Π·Π»ΠΈΡΠΈΡΠ° ΡΠΈΠΏΠ° Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ Ρ ΠΎΠΊΠ²ΠΈΡΡ Π»ΠΈΠ½Π΅Π°ΡΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ ΡΠ΅Π΄Π½ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. Π’ΠΈΠΏΠΎΠ²ΠΈ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΊΠΎΡΠΈ ΡΠ΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ°ΡΡ ΡΡ SWNT(6, 4), SWNT(8, 6), SWNT(11, 9) ΠΈ SWNT(15, 10). ΠΠΎΠΌΠ΅Π½ΡΡΠΈ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠ΅ Π·Π° ΡΠ°ΡΡΠ½Π°ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° Π³Π΄Π΅ ΡΠ΅ Π½Π° ΡΠ°Ρ Π½Π°ΡΠΈΠ½ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΡΠΈΡΠ°Ρ Π½Π° ΠΊΡΠ΅ΡΠ°ΡΠ΅ Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° Π΄ΡΠΆ ΠΏΡΡΠ°ΡΠ΅ ΠΏΠ°ΡΠ°Π»Π΅Π»Π½Π΅ ΡΠ° ΠΎΡΠΎΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. ΠΡΠ·ΠΈΠ½Π΅ ΠΊΡΠ΅ΡΠ°ΡΠ° ΠΏΡΠΎΡΠΎΠ½Π° ΡΠ΅ ΡΠ·ΠΈΠΌΠ°ΡΡ Ρ ΠΎΠΏΡΠ΅Π³Ρ ΠΎΠ΄ 1 Π΄ΠΎ 10 a.u.. ΠΡΠΎΡΠΎΠ½ ΡΡΠ΅Π΄ΡΠ΅ ΠΊΠΈΠ½Π΅ΡΠΈΡΠΊΠ΅ Π΅Π½Π΅ΡΠ³ΠΈΡΠ΅ (ΡΠ΅Π΄Π° MeV) ΠΈΠ·Π°Π·ΠΈΠ²Π° ΠΏΠΎΡΠ°Π²Ρ ΡΠ½Π°ΠΆΠ½Π΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ΅ ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ΅ Π²Π°Π»Π΅Π½ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π° Π½Π° ΠΎΠΌΠΎΡΠ°ΡΡ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΡΡΠΎ ΠΊΠ°ΠΎ Π΅ΡΠ΅ΠΊΠ°Ρ ΠΈΠΌΠ° ΠΈΠ½Π΄ΡΠΊΠΎΠ²Π°ΡΠ΅ Π·Π½Π°ΡΠ°ΡΠ½Π΅ ΡΠΈΠ»Π΅ Π»ΠΈΠΊΠ° Π½Π° ΠΏΡΠΎΡΠΎΠ½, ΠΎΠ΄Π½ΠΎΡΠ½ΠΎ ΠΏΠΎΡΠ°Π²Ρ Π³ΡΠ±ΠΈΡΠ°ΠΊΠ° Π΅Π½Π΅ΡΠ³ΠΈΡΠ΅ ΡΡΠ»Π΅Π΄ Π΅ΠΊΡΡΠΈΡΠ°ΡΠΈΡΠ΅ ΠΏΠΎΠΌΠ΅Π½ΡΡΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π°. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ΅ Π΄Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ° ΡΠΈΠ»Π° Π»ΠΈΠΊΠ° ΠΈΠ·Π°Π·ΠΈΠ²Π° ΡΠ½Π°ΠΆΠ°Π½ ΡΡΠΈΡΠ°Ρ Π½Π° ΡΠ³Π°ΠΎΠ½Ρ ΡΠ°ΡΠΏΠΎΠ΄Π΅Π»Ρ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΠΏΡΠΎΡΠΎΠ½Π° ΠΊΡΠΎΠ· ΠΊΡΠ°ΡΠΊΠ΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²ΡΠ΅Π½ΠΎ ΡΠ΅ Π΄Π° ΡΡ ΠΎΠ²Π΅ Π½ΠΎΠ²Π΅ ΠΏΠΎΡΠ°Π²Π΅ ΠΏΠΎΡΠ΅Π±Π½ΠΎ ΠΈΠ·ΡΠ°ΠΆΠ΅Π½Π΅ ΠΊΠ°Π΄Π° ΡΠ΅ Π±ΡΠ·ΠΈΠ½Π° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΠΏΠΎΠΊΠ»Π°ΠΏΠ° ΡΠ° ΡΠ°Π·Π½ΠΎΠΌ Π±ΡΠ·ΠΈΠ½ΠΎΠΌ ΠΊΠ²Π°Π·ΠΈΠ°ΠΊΡΡΡΠΈΡΠ½ΠΎΠ³ Ο ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π°. ΠΠ½Π°Π»ΠΈΠ·Π° ΡΠ΅ ΡΠΊΡΡΡΠΈΠ»Π° Π³Π΅Π½Π΅ΡΠΈΡΠ°ΡΠ΅ Π½ΡΠΌΠ΅ΡΠΈΡΠΊΠΈΡ
ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠ° ΠΊΠΎΡΠΈΠΌΠ° ΡΠ΅ ΠΏΡΠΈΠΊΠ°Π·Π°Π½ ΡΡΠΈΡΠ°Ρ ΡΠ°ΠΊΡΠΎΡΠ° ΠΏΡΠΈΠ³ΡΡΠ΅ΡΠ°, ΡΠ°Π΄ΠΈΡΡΡΠ° Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΈ ΠΏΠΎΡΠ΅ΡΠ½Π΅ ΠΏΠΎΠ·ΠΈΡΠΈΡΠ΅ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½Π΅ ΡΠ΅ΡΡΠΈΡΠ΅ Π½Π° ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ° ΡΠ½ΡΡΠ°Ρ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. ΠΠ·Π²ΡΡΠ΅Π½ΠΎ ΡΠ΅ ΠΏΠΎΡΠ΅ΡΠ΅ΡΠ΅ Π΄ΠΎΠ±ΠΈΡΠ΅Π½ΠΈΡ
ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠ° Π·Π° ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ° Π·Π° ΡΠ»ΡΡΠ°Ρ ΡΠ΅Π΄Π½ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° Π·Π° ΡΠ°Π·Π»ΠΈΡΠΈΡΠ΅ ΡΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. Π’Π°ΠΊΠΎΡΠ΅ ΡΠ΅ ΠΈΠ·Π²ΡΡΠ΅Π½Π° ΡΠ°ΡΡΠ½Π°ΡΡΠΊΠ° ΡΠΈΠΌΡΠ»Π°ΡΠΈΡΠ° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ° ΡΠ΅ΡΡΠΈΡΠ° ΠΊΠ°ΠΎ ΠΈ ΠΏΠΎΡΠ΅ΡΠ΅ΡΠ΅ ΠΏΡΠΎΡΡΠΎΡΠ½Π΅ ΠΈ ΡΠ³Π°ΠΎΠ½Π΅ ΡΠ°ΡΠΏΠΎΠ΄Π΅Π»Π΅ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° Ρ ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΌΠ΅Π½ΡΡΠΈΡ
Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈΡ
ΠΌΠΎΠ΄Π΅Π»Π°. Π£ Π½Π°ΡΡΠ°Π²ΠΊΡ ΡΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠ° ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ° ΠΏΡΠΎΡΠΎΠ½Π° ΡΠ° SWNT(6, 4) Π³Π΄Π΅ ΡΠ΅ ΡΠ·ΠΈΠΌΠ°ΡΡ Ρ ΠΎΠ±Π·ΠΈΡ Π΅ΡΠ΅ΠΊΡΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ΅ ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ΅ Ρ ΠΎΠΊΠ²ΠΈΡΡ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ ΠΏΡΠΎΡΠΈΡΠ΅Π½ΠΎΠ³ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. ΠΠ²Π°Ρ ΠΌΠΎΠ΄Π΅Π» ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠΈ Π·Π° Π°Π½Π°Π»ΠΈΡΠΈΡΠΊΠΎ ΠΈ Π½ΡΠΌΠ΅ΡΠΈΡΠΊΠΎ ΡΠ°ΡΡΠ½Π°ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° ΠΈ Π·Π°ΡΡΡΠ°Π²Π½Π΅ ΡΠΈΠ»Π΅ Π½Π° ΠΏΡΠΎΡΠΎΠ½ ΠΊΠΎΡΠΈ ΡΠ΅ ΠΊΡΠ΅ΡΠ΅ ΠΏΠ°ΡΠ°Π»Π΅Π»Π½ΠΎ ΡΠ° ΠΎΡΠΎΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ Ρ ΡΠ»ΡΡΠ°ΡΠ΅Π²ΠΈΠΌΠ° ΠΊΠ°Π΄Π° ΡΠ΅ ΡΡΠ°ΡΠ΅ΠΊΡΠΎΡΠΈΡΠ° ΡΠ΅Π³ΠΎΠ²ΠΎΠ³ ΠΊΡΠ΅ΡΠ°ΡΠ° ΡΠ½ΡΡΠ°Ρ ΠΈ Π²Π°Π½ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. ΠΠΏΡΠ΅Π³ Π±ΡΠ·ΠΈΠ½Π° ΠΊΠΎΡΠΈ ΡΠ΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΠ΅ ΠΎΠ΄ 0.5 Π΄ΠΎ 15 a.u.. Π Π°Π·ΠΌΠ°ΡΡΠ° ΡΠ΅ ΡΡΠΈΡΠ°Ρ Π΅ΡΠ΅ΠΊΠ°ΡΠ° ΡΠ°Π·Π»ΠΈΡΠΈΡΠΈΡ
ΡΠ³Π°ΠΎΠ½ΠΈΡ
ΠΌΠΎΠ΄ΠΎΠ²Π° Π½Π° Π·Π°Π²ΠΈΡΠ½ΠΎΡΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° ΠΎΠ΄ Π±ΡΠ·ΠΈΠ½Π΅ ΠΏΡΠΎΡΠΎΠ½Π° Π·Π° ΡΠ°Π·Π»ΠΈΡΠΈΡΠ΅ ΡΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. Π’Π°ΠΊΠΎΡΠ΅ ΡΠ΅ ΡΠ°ΡΡΠ½Π° ΠΏΡΠΎΡΡΠΎΡΠ½Π° ΠΈ ΡΠ³Π°ΠΎΠ½Π° Π΄ΠΈΡΡΡΠΈΠ±ΡΡΠΈΡΠ° ΠΏΡΠΎΡΠΎΠ½Π° Ρ ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠΎΡΠΈΡΠ΅Π½ΠΎΠ³ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° ΠΈ ΠΏΠΎΡΠ΅Π΄ΠΈ ΡΠ° ΡΠ»ΡΡΠ°ΡΠ΅ΠΌ ΠΎΠ±ΠΈΡΠ½ΠΎΠ³ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° ΡΠ° Π½ΡΠ»ΡΠΈΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠΌ ΠΏΡΠΈΠ³ΡΡΠ΅ΡΠ°.
ΠΠ° ΠΊΡΠ°ΡΡ ΡΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠ° ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ° Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΡΠ° ΠΏΡΠ°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡΠΈΠ²ΡΠ΅Π½ΠΈΠΌ ΡΠ΅Π΄Π½ΠΎΡΠ»ΠΎΡΠ½ΠΈΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈΠΌΠ° ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΌΠ° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ° ΠΊΠ°Π΄Π° ΡΠ΅ ΡΡΠ°ΡΡΠ½Π°ΡΠ° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ° ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ° Π²Π°Π»Π΅Π½ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π° ΡΠ³ΡΠ΅Π½ΠΈΠΊΠ°. ΠΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ° ΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½Π° Π»ΠΈΠ½Π΅Π°ΡΠΈΠ·ΠΎΠ²Π°Π½ΠΈΠΌ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΈΠΌ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΎΠΌ ΡΠ° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΠΌΠ° ΠΎΠ΄ΡΠ΅ΡΠ΅Π½ΠΈΠΌ ΠΈΠ· Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠ½ΠΈΡ
Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½Π°ΡΠ° Ρ Π²Π΅Π·ΠΈ ΡΠ° ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠΎΠΌ Π³ΡΠ±ΠΈΡΠ°ΠΊΠ° Π΅Π½Π΅ΡΠ³ΠΈΡΠ΅ Ρ ΡΠ³ΡΠ΅Π½ΠΈΡΠ½ΠΈΠΌ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠ°ΠΌΠ°. Π₯ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠΈ Π·Π° ΠΈΠ·ΡΠ°ΡΡΠ½Π°Π²Π°ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° ΠΈΠ½Π΄ΡΠΊΠΎΠ²Π°Π½ΠΎΠ³ ΠΊΡΠ΅ΡΠ°ΡΠ΅ΠΌ ΠΏΡΠΎΡΠΎΠ½Π° ΠΊΡΠΎΠ· ΡΠ΅ΡΠΈΡΠΈ ΠΏΠΎΠΌΠ΅Π½ΡΡΠ° ΡΠΈΠΏΠ° Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΏΡΠΈ Π±ΡΠ·ΠΈΠ½ΠΈ ΠΎΠ΄ 3 Π°ΡΠΎΠΌΡΠΊΠ΅ ΡΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ° ΡΠ΅ ΠΏΠΎΡΠΎΠΌ Π΄ΠΎΠ΄Π°ΡΠ΅ Π½Π° ΠΠΎΡΠ»-Π’Π°ΡΠ½Π΅ΠΎΠ² Π°ΡΠΎΠΌΡΠΊΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Ρ ΡΠΈΡΡ Π΄ΠΎΠ±ΠΈΡΠ°ΡΠ° ΡΠΊΡΠΏΠ½ΠΎΠ³ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Ρ ΠΏΡΠ°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡΠΈΠ²ΡΠ΅Π½ΠΈΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈΠΌΠ°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Ρ ΠΎΠ²ΠΈΡ
ΠΏΡΠΎΡΠ°ΡΡΠ½Π° ΡΠΈΠΌΡΠ»ΠΈΡΠ° ΡΠ΅ ΠΏΡΠΎΡΠ΅Ρ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ° ΠΏΡΠΎΡΠΎΠ½ΡΠΊΠΎΠ³ ΡΠ½ΠΎΠΏΠ° ΠΈ ΠΎΠ΄ΡΠ΅ΡΡΡΠ΅ ΠΏΡΠΎΡΡΠΎΡΠ½Π° ΠΈ ΡΠ³Π°ΠΎΠ½Π° ΡΠ°ΡΠΏΠΎΠ΄Π΅Π»Π° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΠΏΡΠΎΡΠΎΠ½Π° ΠΊΡΠΎΠ· Π·Π°ΠΊΡΠΈΠ²ΡΠ΅Π½Π΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΈ ΠΏΠΎΡΠ΅Π΄Π΅ Π΄ΠΎΠ±ΠΈΡΠ΅Π½ΠΈ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ ΡΠ° ΡΠ»ΡΡΠ°ΡΠ΅ΠΌ ΠΊΠ°Π΄Π° ΡΠ΅ Π½Π΅ ΡΠ·ΠΈΠΌΠ° Ρ ΠΎΠ±Π·ΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ° ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ° ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ°.In this dissertation the effects of dynamic polarization on charged particles channeling through various types of single β walled carbon nanotubes (SWNTs) are studied. At the very beginning of the analyze the interactions of charged particles with 4 different types of SWNTs by means of linearized two dimensional one and two fluid hydrodynamic models are studied. Types of SWNTs are (6, 4), (8, 6), (11, 9) and (15, 10). The models are used to calculate the image potential for a charged particle moving parallel to the axis of the SWNTs. Proton speeds between 1 and 10 a.u. are chosen. A proton that moves with average energy (MeV) will induce a strong dynamic polarization of valence electrons in the nanotubes which in turn will give rise to a sizeable image force on the proton, as well as a considerable energy loss due to the collective, or plasma, excitations of those electrons. The dynamic image force was shown to exert large influence in the angular distributions of protons channelled through short SWNTs. It is found that these quantities exhibit novel features when the particle speed matches the phase velocity of the quasiacoustic Ο plasmon. Numerical results are obtained to show the influence of the damping factor, the nanotube radius, and the particle position on the image potential inside the nanotube. Results for image potential in the one and two fluid hydrodynamic models are compared for different types of nanotubes. The spatial and angular distributions of protons are also computed and compared for the two models. After that, we study the interaction of charged particles with a SWNT(6, 4) under channelling conditions by means of the linearized, two dimensional (2D), two-fluid extended hydrodynamic model. We use the model to calculate analytically and numerically the image potential and the stopping force for a proton moving parallel to the axis of the SWNT, both inside and outside the nanotube at the speeds from 0.5 a.u. to 15 a.u.. The effects of different angular modes on the velocity dependence of the image potential are compared for a proton moving in different types of SWNTs. We also compute the spatial and angular distributions of protons in the 2D two-fluid extended hydrodynamic model and compare them with the 2D two-fluid hydrodynamic model with zero damping. At the end we investigate the interaction of charged particles with straight and bent single-walled carbon nanotubes under channelling conditions in the presence of dynamic polarization of the valence electrons in carbon nanotube wall. This polarization is described by a linearized, two-fluid hydrodynamic model with the parameters taken from recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nanostructures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at the speed of 3 atomic units. The image potential is then combined with the Doyle-Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Based on that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential
The influence of dynamic polarization on charged particles interaction with carbon nanotubes in two - fluid hydrodynamic model
Π£ ΠΎΠ²ΠΎΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠΈ ΡΠ΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΡΠΈΡΠ°Ρ Π΅ΡΠ΅ΠΊΠ°ΡΠ° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ΅ ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ΅ Π½Π° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ΅ Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΠΊΡΠΎΠ· ΡΠ°Π·Π»ΠΈΡΠΈΡΠ΅ ΡΠΈΠΏΠΎΠ²Π΅ ΡΠ΅Π΄Π½ΠΎΡΠ»ΠΎΡΠ½ΠΈΡ
ΡΠ³ΡΠ΅Π½ΠΈΡΠ½ΠΈΡ
Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ (SWNT). ΠΠ° ΠΏΠΎΡΠ΅ΡΠΊΡ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΠ΅ ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ° Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΡΠ° ΡΠ΅ΡΠΈΡΠΈ ΡΠ°Π·Π»ΠΈΡΠΈΡΠ° ΡΠΈΠΏΠ° Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ Ρ ΠΎΠΊΠ²ΠΈΡΡ Π»ΠΈΠ½Π΅Π°ΡΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ ΡΠ΅Π΄Π½ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. Π’ΠΈΠΏΠΎΠ²ΠΈ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΊΠΎΡΠΈ ΡΠ΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ°ΡΡ ΡΡ SWNT(6, 4), SWNT(8, 6), SWNT(11, 9) ΠΈ SWNT(15, 10). ΠΠΎΠΌΠ΅Π½ΡΡΠΈ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠ΅ Π·Π° ΡΠ°ΡΡΠ½Π°ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° Π³Π΄Π΅ ΡΠ΅ Π½Π° ΡΠ°Ρ Π½Π°ΡΠΈΠ½ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΡΠΈΡΠ°Ρ Π½Π° ΠΊΡΠ΅ΡΠ°ΡΠ΅ Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° Π΄ΡΠΆ ΠΏΡΡΠ°ΡΠ΅ ΠΏΠ°ΡΠ°Π»Π΅Π»Π½Π΅ ΡΠ° ΠΎΡΠΎΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. ΠΡΠ·ΠΈΠ½Π΅ ΠΊΡΠ΅ΡΠ°ΡΠ° ΠΏΡΠΎΡΠΎΠ½Π° ΡΠ΅ ΡΠ·ΠΈΠΌΠ°ΡΡ Ρ ΠΎΠΏΡΠ΅Π³Ρ ΠΎΠ΄ 1 Π΄ΠΎ 10 a.u.. ΠΡΠΎΡΠΎΠ½ ΡΡΠ΅Π΄ΡΠ΅ ΠΊΠΈΠ½Π΅ΡΠΈΡΠΊΠ΅ Π΅Π½Π΅ΡΠ³ΠΈΡΠ΅ (ΡΠ΅Π΄Π° MeV) ΠΈΠ·Π°Π·ΠΈΠ²Π° ΠΏΠΎΡΠ°Π²Ρ ΡΠ½Π°ΠΆΠ½Π΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ΅ ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ΅ Π²Π°Π»Π΅Π½ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π° Π½Π° ΠΎΠΌΠΎΡΠ°ΡΡ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΡΡΠΎ ΠΊΠ°ΠΎ Π΅ΡΠ΅ΠΊΠ°Ρ ΠΈΠΌΠ° ΠΈΠ½Π΄ΡΠΊΠΎΠ²Π°ΡΠ΅ Π·Π½Π°ΡΠ°ΡΠ½Π΅ ΡΠΈΠ»Π΅ Π»ΠΈΠΊΠ° Π½Π° ΠΏΡΠΎΡΠΎΠ½, ΠΎΠ΄Π½ΠΎΡΠ½ΠΎ ΠΏΠΎΡΠ°Π²Ρ Π³ΡΠ±ΠΈΡΠ°ΠΊΠ° Π΅Π½Π΅ΡΠ³ΠΈΡΠ΅ ΡΡΠ»Π΅Π΄ Π΅ΠΊΡΡΠΈΡΠ°ΡΠΈΡΠ΅ ΠΏΠΎΠΌΠ΅Π½ΡΡΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π°. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ΅ Π΄Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ° ΡΠΈΠ»Π° Π»ΠΈΠΊΠ° ΠΈΠ·Π°Π·ΠΈΠ²Π° ΡΠ½Π°ΠΆΠ°Π½ ΡΡΠΈΡΠ°Ρ Π½Π° ΡΠ³Π°ΠΎΠ½Ρ ΡΠ°ΡΠΏΠΎΠ΄Π΅Π»Ρ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΠΏΡΠΎΡΠΎΠ½Π° ΠΊΡΠΎΠ· ΠΊΡΠ°ΡΠΊΠ΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²ΡΠ΅Π½ΠΎ ΡΠ΅ Π΄Π° ΡΡ ΠΎΠ²Π΅ Π½ΠΎΠ²Π΅ ΠΏΠΎΡΠ°Π²Π΅ ΠΏΠΎΡΠ΅Π±Π½ΠΎ ΠΈΠ·ΡΠ°ΠΆΠ΅Π½Π΅ ΠΊΠ°Π΄Π° ΡΠ΅ Π±ΡΠ·ΠΈΠ½Π° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΠΏΠΎΠΊΠ»Π°ΠΏΠ° ΡΠ° ΡΠ°Π·Π½ΠΎΠΌ Π±ΡΠ·ΠΈΠ½ΠΎΠΌ ΠΊΠ²Π°Π·ΠΈΠ°ΠΊΡΡΡΠΈΡΠ½ΠΎΠ³ Ο ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π°. ΠΠ½Π°Π»ΠΈΠ·Π° ΡΠ΅ ΡΠΊΡΡΡΠΈΠ»Π° Π³Π΅Π½Π΅ΡΠΈΡΠ°ΡΠ΅ Π½ΡΠΌΠ΅ΡΠΈΡΠΊΠΈΡ
ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠ° ΠΊΠΎΡΠΈΠΌΠ° ΡΠ΅ ΠΏΡΠΈΠΊΠ°Π·Π°Π½ ΡΡΠΈΡΠ°Ρ ΡΠ°ΠΊΡΠΎΡΠ° ΠΏΡΠΈΠ³ΡΡΠ΅ΡΠ°, ΡΠ°Π΄ΠΈΡΡΡΠ° Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΈ ΠΏΠΎΡΠ΅ΡΠ½Π΅ ΠΏΠΎΠ·ΠΈΡΠΈΡΠ΅ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½Π΅ ΡΠ΅ΡΡΠΈΡΠ΅ Π½Π° ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ° ΡΠ½ΡΡΠ°Ρ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. ΠΠ·Π²ΡΡΠ΅Π½ΠΎ ΡΠ΅ ΠΏΠΎΡΠ΅ΡΠ΅ΡΠ΅ Π΄ΠΎΠ±ΠΈΡΠ΅Π½ΠΈΡ
ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠ° Π·Π° ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ° Π·Π° ΡΠ»ΡΡΠ°Ρ ΡΠ΅Π΄Π½ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° Π·Π° ΡΠ°Π·Π»ΠΈΡΠΈΡΠ΅ ΡΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. Π’Π°ΠΊΠΎΡΠ΅ ΡΠ΅ ΠΈΠ·Π²ΡΡΠ΅Π½Π° ΡΠ°ΡΡΠ½Π°ΡΡΠΊΠ° ΡΠΈΠΌΡΠ»Π°ΡΠΈΡΠ° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ° ΡΠ΅ΡΡΠΈΡΠ° ΠΊΠ°ΠΎ ΠΈ ΠΏΠΎΡΠ΅ΡΠ΅ΡΠ΅ ΠΏΡΠΎΡΡΠΎΡΠ½Π΅ ΠΈ ΡΠ³Π°ΠΎΠ½Π΅ ΡΠ°ΡΠΏΠΎΠ΄Π΅Π»Π΅ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° Ρ ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΌΠ΅Π½ΡΡΠΈΡ
Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈΡ
ΠΌΠΎΠ΄Π΅Π»Π°. Π£ Π½Π°ΡΡΠ°Π²ΠΊΡ ΡΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠ° ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ° ΠΏΡΠΎΡΠΎΠ½Π° ΡΠ° SWNT(6, 4) Π³Π΄Π΅ ΡΠ΅ ΡΠ·ΠΈΠΌΠ°ΡΡ Ρ ΠΎΠ±Π·ΠΈΡ Π΅ΡΠ΅ΠΊΡΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ΅ ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ΅ Ρ ΠΎΠΊΠ²ΠΈΡΡ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ ΠΏΡΠΎΡΠΈΡΠ΅Π½ΠΎΠ³ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. ΠΠ²Π°Ρ ΠΌΠΎΠ΄Π΅Π» ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠΈ Π·Π° Π°Π½Π°Π»ΠΈΡΠΈΡΠΊΠΎ ΠΈ Π½ΡΠΌΠ΅ΡΠΈΡΠΊΠΎ ΡΠ°ΡΡΠ½Π°ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° ΠΈ Π·Π°ΡΡΡΠ°Π²Π½Π΅ ΡΠΈΠ»Π΅ Π½Π° ΠΏΡΠΎΡΠΎΠ½ ΠΊΠΎΡΠΈ ΡΠ΅ ΠΊΡΠ΅ΡΠ΅ ΠΏΠ°ΡΠ°Π»Π΅Π»Π½ΠΎ ΡΠ° ΠΎΡΠΎΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ Ρ ΡΠ»ΡΡΠ°ΡΠ΅Π²ΠΈΠΌΠ° ΠΊΠ°Π΄Π° ΡΠ΅ ΡΡΠ°ΡΠ΅ΠΊΡΠΎΡΠΈΡΠ° ΡΠ΅Π³ΠΎΠ²ΠΎΠ³ ΠΊΡΠ΅ΡΠ°ΡΠ° ΡΠ½ΡΡΠ°Ρ ΠΈ Π²Π°Π½ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. ΠΠΏΡΠ΅Π³ Π±ΡΠ·ΠΈΠ½Π° ΠΊΠΎΡΠΈ ΡΠ΅ ΡΠ°Π·ΠΌΠ°ΡΡΠ° ΡΠ΅ ΠΎΠ΄ 0.5 Π΄ΠΎ 15 a.u.. Π Π°Π·ΠΌΠ°ΡΡΠ° ΡΠ΅ ΡΡΠΈΡΠ°Ρ Π΅ΡΠ΅ΠΊΠ°ΡΠ° ΡΠ°Π·Π»ΠΈΡΠΈΡΠΈΡ
ΡΠ³Π°ΠΎΠ½ΠΈΡ
ΠΌΠΎΠ΄ΠΎΠ²Π° Π½Π° Π·Π°Π²ΠΈΡΠ½ΠΎΡΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° ΠΎΠ΄ Π±ΡΠ·ΠΈΠ½Π΅ ΠΏΡΠΎΡΠΎΠ½Π° Π·Π° ΡΠ°Π·Π»ΠΈΡΠΈΡΠ΅ ΡΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ. Π’Π°ΠΊΠΎΡΠ΅ ΡΠ΅ ΡΠ°ΡΡΠ½Π° ΠΏΡΠΎΡΡΠΎΡΠ½Π° ΠΈ ΡΠ³Π°ΠΎΠ½Π° Π΄ΠΈΡΡΡΠΈΠ±ΡΡΠΈΡΠ° ΠΏΡΠΎΡΠΎΠ½Π° Ρ ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠΎΡΠΈΡΠ΅Π½ΠΎΠ³ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° ΠΈ ΠΏΠΎΡΠ΅Π΄ΠΈ ΡΠ° ΡΠ»ΡΡΠ°ΡΠ΅ΠΌ ΠΎΠ±ΠΈΡΠ½ΠΎΠ³ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° ΡΠ° Π½ΡΠ»ΡΠΈΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠΌ ΠΏΡΠΈΠ³ΡΡΠ΅ΡΠ°.
ΠΠ° ΠΊΡΠ°ΡΡ ΡΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠ° ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ° Π½Π°Π΅Π»Π΅ΠΊΡΡΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠ° ΡΠ° ΠΏΡΠ°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡΠΈΠ²ΡΠ΅Π½ΠΈΠΌ ΡΠ΅Π΄Π½ΠΎΡΠ»ΠΎΡΠ½ΠΈΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈΠΌΠ° ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΌΠ° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ° ΠΊΠ°Π΄Π° ΡΠ΅ ΡΡΠ°ΡΡΠ½Π°ΡΠ° Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ° ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ° Π²Π°Π»Π΅Π½ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π° ΡΠ³ΡΠ΅Π½ΠΈΠΊΠ°. ΠΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ° ΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½Π° Π»ΠΈΠ½Π΅Π°ΡΠΈΠ·ΠΎΠ²Π°Π½ΠΈΠΌ Π΄Π²ΠΎΡΠ»ΡΠΈΠ΄Π½ΠΈΠΌ Ρ
ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΎΠΌ ΡΠ° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΠΌΠ° ΠΎΠ΄ΡΠ΅ΡΠ΅Π½ΠΈΠΌ ΠΈΠ· Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ Π½Π΅Π·Π°Π²ΠΈΡΠ½ΠΈΡ
Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½Π°ΡΠ° Ρ Π²Π΅Π·ΠΈ ΡΠ° ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠΎΠΌ Π³ΡΠ±ΠΈΡΠ°ΠΊΠ° Π΅Π½Π΅ΡΠ³ΠΈΡΠ΅ Ρ ΡΠ³ΡΠ΅Π½ΠΈΡΠ½ΠΈΠΌ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠ°ΠΌΠ°. Π₯ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» ΡΠ΅ ΠΊΠΎΡΠΈΡΡΠΈ Π·Π° ΠΈΠ·ΡΠ°ΡΡΠ½Π°Π²Π°ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Π»ΠΈΠΊΠ° ΠΈΠ½Π΄ΡΠΊΠΎΠ²Π°Π½ΠΎΠ³ ΠΊΡΠ΅ΡΠ°ΡΠ΅ΠΌ ΠΏΡΠΎΡΠΎΠ½Π° ΠΊΡΠΎΠ· ΡΠ΅ΡΠΈΡΠΈ ΠΏΠΎΠΌΠ΅Π½ΡΡΠ° ΡΠΈΠΏΠ° Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΏΡΠΈ Π±ΡΠ·ΠΈΠ½ΠΈ ΠΎΠ΄ 3 Π°ΡΠΎΠΌΡΠΊΠ΅ ΡΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅. ΠΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ° ΡΠ΅ ΠΏΠΎΡΠΎΠΌ Π΄ΠΎΠ΄Π°ΡΠ΅ Π½Π° ΠΠΎΡΠ»-Π’Π°ΡΠ½Π΅ΠΎΠ² Π°ΡΠΎΠΌΡΠΊΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Ρ ΡΠΈΡΡ Π΄ΠΎΠ±ΠΈΡΠ°ΡΠ° ΡΠΊΡΠΏΠ½ΠΎΠ³ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° Ρ ΠΏΡΠ°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡΠΈΠ²ΡΠ΅Π½ΠΈΠΌ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈΠΌΠ°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Ρ ΠΎΠ²ΠΈΡ
ΠΏΡΠΎΡΠ°ΡΡΠ½Π° ΡΠΈΠΌΡΠ»ΠΈΡΠ° ΡΠ΅ ΠΏΡΠΎΡΠ΅Ρ ΠΊΠ°Π½Π°Π»ΠΈΡΠ°ΡΠ° ΠΏΡΠΎΡΠΎΠ½ΡΠΊΠΎΠ³ ΡΠ½ΠΎΠΏΠ° ΠΈ ΠΎΠ΄ΡΠ΅ΡΡΡΠ΅ ΠΏΡΠΎΡΡΠΎΡΠ½Π° ΠΈ ΡΠ³Π°ΠΎΠ½Π° ΡΠ°ΡΠΏΠΎΠ΄Π΅Π»Π° ΠΊΠ°Π½Π°Π»ΠΈΡΠ°Π½ΠΈΡ
ΠΏΡΠΎΡΠΎΠ½Π° ΠΊΡΠΎΠ· Π·Π°ΠΊΡΠΈΠ²ΡΠ΅Π½Π΅ Π½Π°Π½ΠΎΡΠ΅Π²ΠΈ ΠΈ ΠΏΠΎΡΠ΅Π΄Π΅ Π΄ΠΎΠ±ΠΈΡΠ΅Π½ΠΈ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ ΡΠ° ΡΠ»ΡΡΠ°ΡΠ΅ΠΌ ΠΊΠ°Π΄Π° ΡΠ΅ Π½Π΅ ΡΠ·ΠΈΠΌΠ° Ρ ΠΎΠ±Π·ΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠΊΠ° ΠΏΠΎΠ»Π°ΡΠΈΠ·Π°ΡΠΈΡΠ° ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π»ΠΈΠΊΠ°.In this dissertation the effects of dynamic polarization on charged particles channeling through various types of single β walled carbon nanotubes (SWNTs) are studied. At the very beginning of the analyze the interactions of charged particles with 4 different types of SWNTs by means of linearized two dimensional one and two fluid hydrodynamic models are studied. Types of SWNTs are (6, 4), (8, 6), (11, 9) and (15, 10). The models are used to calculate the image potential for a charged particle moving parallel to the axis of the SWNTs. Proton speeds between 1 and 10 a.u. are chosen. A proton that moves with average energy (MeV) will induce a strong dynamic polarization of valence electrons in the nanotubes which in turn will give rise to a sizeable image force on the proton, as well as a considerable energy loss due to the collective, or plasma, excitations of those electrons. The dynamic image force was shown to exert large influence in the angular distributions of protons channelled through short SWNTs. It is found that these quantities exhibit novel features when the particle speed matches the phase velocity of the quasiacoustic Ο plasmon. Numerical results are obtained to show the influence of the damping factor, the nanotube radius, and the particle position on the image potential inside the nanotube. Results for image potential in the one and two fluid hydrodynamic models are compared for different types of nanotubes. The spatial and angular distributions of protons are also computed and compared for the two models. After that, we study the interaction of charged particles with a SWNT(6, 4) under channelling conditions by means of the linearized, two dimensional (2D), two-fluid extended hydrodynamic model. We use the model to calculate analytically and numerically the image potential and the stopping force for a proton moving parallel to the axis of the SWNT, both inside and outside the nanotube at the speeds from 0.5 a.u. to 15 a.u.. The effects of different angular modes on the velocity dependence of the image potential are compared for a proton moving in different types of SWNTs. We also compute the spatial and angular distributions of protons in the 2D two-fluid extended hydrodynamic model and compare them with the 2D two-fluid hydrodynamic model with zero damping. At the end we investigate the interaction of charged particles with straight and bent single-walled carbon nanotubes under channelling conditions in the presence of dynamic polarization of the valence electrons in carbon nanotube wall. This polarization is described by a linearized, two-fluid hydrodynamic model with the parameters taken from recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nanostructures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at the speed of 3 atomic units. The image potential is then combined with the Doyle-Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Based on that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential
Image potential and stopping force in the interaction of fast ions with carbon nanotubes: The extended two-fluid hydrodynamic model
We study the interaction of charged particles with a (6, 4) single-walled carbon nanotube (SWNT) under channeling conditions by means of the linearized, two dimensional (2D), two-fluid extended hydrodynamic model. We use the model to calculate analytically and numerically the image potential and the stopping force for a proton moving parallel to the axis of the SWNT, both inside and outside the nanotube at the speeds from 0.5 a.u. to 15 a.u. The effects of different angular modes on the velocity dependence of the image potential are compared for a proton moving in different types of SWNTs. We also compute the spatial and angular distributions of protons in the 2D two-fluid extended hydrodynamic model and compare them with the 2D two-fluid hydrodynamic model with zero damping. (C) 2015 Elsevier B.V. All rights reserved
Carbon Nanotubes Characterization by Channeled Fast Ions Spatial and Angular Distribution Fingerprints
In this paper we investigate possibility of carbon nanotubes characterization by differentiation in spatial and angular distribution fingerprints obtained by fast ions channeling. We analyze straight single walled carbon nanotubes (SWNTs) interacting with fast ion beams. We calculate the image potential for protons moving through the four types of SWNTs at the speeds of 3 a.u.. We calculate total potential in straight carbon nanotubes. Interaction of channelled ions with nanotube electrons we calculate by linearized, two dimensional (2D), extended two-fluid hydrodynamic model. We simulate ion beams channelling through the four types of SWNTs under calculated conditions of interaction and calculate spatial and angular distributions of channelled particles what we use as method for different SWNTs characterization.5th Mediterranean Conference on Embedded Computing (MECO), Jun 12-16, 2016, Bar, Montenegr
Wake effect in the interaction of an external charged particle with a graphene-sapphire-graphene structure due to excitation of plasmon-phonon hybrid modes
We study the wake effect due to excitation of a plasmon-phonon hybrid mode in a sandwich-like structure consisting of two doped graphene sheets, separated by a layer of Al2O3 (sapphire), which is induced by an external charged particle moving parallel to the structure. The response function of each graphene is obtained using two approaches within the random phase approximation: an ab initio method that includes all electronic bands in graphene and a computationally less demanding method based on the massless Dirac fermion (MDF) approximation for the low-energy excitations of electrons in the Ο bands. The response of the sapphire layer is described by a dielectric function consisting of several Lorentzian terms. We evaluate the total electrostatic potential in the plane of the upper graphene sheet for a particle moving at the sub-threshold speed for the wake effect in a single, free graphene. We show that, when the space between graphene sheets is air, there is only a sharp, somewhat asymmetric peak in the potential at the position of the particle. On the other hand, when the space is filled with sapphire, there is a prominent wake pattern in the potential behind the particle resulting from a low-frequency plasmon-phonon mode. It can be noted that the analytical MDF model reproduces the overall shape and the period of quasi-oscillations in the wake potential obtained from the ab initio calculations.Bucharest CA 15107 Fall Meeting : September 6-7, Bucharest, Romania, 2018