20 research outputs found

    Plasmon-phonon hybridization in layered structures including graphene

    Get PDF
    We present a method to introduce several graphene sheets into the non-retarded Green’s function for a layered structure containing polar insulators, which support transverse optical phonon modes. Dispersion relations are derived to illustrate hybridization of Dirac plasmons in two graphene sheets with phonon modes in an oxide spacer layer between them.28th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2016, August 29 - September 2, 2016, Belgrad

    Wake effect due to excitation of plasmon-phonon hybrid modes in a graphene-sapphire-graphene structure by a moving charge

    Get PDF
    We study the wake effect due to excitation of a plasmon-phonon hybrid mode in a sandwich-like structure consisting of two doped graphene sheets, separated by a layer of Al2O3 (sapphire), which is induced by an external charged particle moving parallel to the structure.29th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2018, August 28 - September 1, 2018, Belgrade

    Stopping force acting on a charged particle moving over a drift-current biased supported graphene

    Get PDF
    In our recent publication we investigated the impact of plasmon-phonon hybridization on the stopping force acting on a charged particle moving parallel to a sandwich-like structure consisting of two graphene sheets separated by a layer of sapphire. In this work we evaluate the stopping force on a charged particle moving parallel to a graphene layer biased with a drift electric current supported by an insulating substrate. The dielectric function of the system is written in terms of the response function of graphene and the bulk dielectric function of the substrate. Focusing on the range of frequencies from THz to mid-infrared, the response function is expressed in terms of a frequency-dependent conductivity of graphene. The conductivity with a drift current is evaluated using the Galilean Doppler shift model. The energy loss function (the imaginary part of the negative value of the inverse dielectric function) and the stopping force are presented in the cases without and with drifting electrons, showing the effects of the drift velocity on the plasmon-phonon hybridization. The stopping force is also calculated when the drift and electron beam velocities have the same and opposite signs.Catalysts for water splitting and energy storage, April 3-5th, 2024 ; Vienna, AustriaLink to the conference website: [https://web.archive.org/web/20240409120751/http://dollywood.itp.tuwien.ac.at/~florian/Vienna_April2024/

    Wake effect in interactions of ions with graphene-sapphire-graphene structure

    Get PDF
    In our recent publication1 we have studied the wake potential induced by an external charged particle that moves parallel to various sy1-Al2O3-sy2 composites, where syi (with i=1,2) may be vacuum, pristine graphene, or doped graphene. Several important parameters were fixed at their respective typical values: the distance of the charged particle from the closest surface, the thickness of the sapphire (aluminum oxide, Al2O3) layer, and the doping density (i.e., Fermi energy) of graphene. In this work we present a detailed study of the effects due to variations of all those parameters in the case of the wake potential produced by charged particle moving parallel to the graphene-Al2O3- graphene composite system, by using the dynamic polarization function of graphene within the random phase approximation for its Ο€ electrons described as Dirac’s fermions and by using a local dielectric function for the sapphire layer2 . For the velocity of the charged particle below the threshold for excitations of the Dirac plasmon in graphene, given by its Fermi velocity vF, strong effects are observed due to variation of the particle distance, while for the velocity of the charged particle above vF strong effects are observed due to varying the thickness of the Al2O3 layer, as well as due to graphene doping

    The influence of dynamic polarization on charged particles interaction with carbon nanotubes in two - fluid hydrodynamic model

    No full text
    Π£ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ сС Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π΅Ρ„Π΅ΠΊΠ°Ρ‚Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Π½Π° каналисањС наСлСктрисаних чСстица ΠΊΡ€ΠΎΠ· Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ Ρ‚ΠΈΠΏΠΎΠ²Π΅ Ρ˜Π΅Π΄Π½ΠΎΡΠ»ΠΎΡ˜Π½ΠΈΡ… ΡƒΠ³Ρ™Π΅Π½ΠΈΡ‡Π½ΠΈΡ… Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ (SWNT). На ΠΏΠΎΡ‡Π΅Ρ‚ΠΊΡƒ Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° сС ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° наСлСктрисаних чСстица са Ρ‡Π΅Ρ‚ΠΈΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π° Ρ‚ΠΈΠΏΠ° Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ Ρ˜Π΅Π΄Π½ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. Π’ΠΈΠΏΠΎΠ²ΠΈ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ који сС Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Ρ˜Ρƒ су SWNT(6, 4), SWNT(8, 6), SWNT(11, 9) ΠΈ SWNT(15, 10). ΠŸΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ сС користС Π·Π° Ρ€Π°Ρ‡ΡƒΠ½Π°ΡšΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° Π³Π΄Π΅ сС Π½Π° Ρ‚Π°Ρ˜ Π½Π°Ρ‡ΠΈΠ½ Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ наСлСктрисаних чСстица Π΄ΡƒΠΆ ΠΏΡƒΡ‚Π°ΡšΠ΅ ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½Π΅ са осом Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π‘Ρ€Π·ΠΈΠ½Π΅ ΠΊΡ€Π΅Ρ‚Π°ΡšΠ° ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° сС ΡƒΠ·ΠΈΠΌΠ°Ρ˜Ρƒ Ρƒ опсСгу ΠΎΠ΄ 1 Π΄ΠΎ 10 a.u.. ΠŸΡ€ΠΎΡ‚ΠΎΠ½ ΡΡ€Π΅Π΄ΡšΠ΅ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΡ‡ΠΊΠ΅ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ (Ρ€Π΅Π΄Π° MeV) ΠΈΠ·Π°Π·ΠΈΠ²Π° ΠΏΠΎΡ˜Π°Π²Ρƒ снаТнС Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π° Π½Π° ΠΎΠΌΠΎΡ‚Π°Ρ‡Ρƒ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΡˆΡ‚ΠΎ ΠΊΠ°ΠΎ Π΅Ρ„Π΅ΠΊΠ°Ρ‚ ΠΈΠΌΠ° ΠΈΠ½Π΄ΡƒΠΊΠΎΠ²Π°ΡšΠ΅ Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ силС Π»ΠΈΠΊΠ° Π½Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½, односно ΠΏΠΎΡ˜Π°Π²Ρƒ Π³ΡƒΠ±ΠΈΡ‚Π°ΠΊΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ услСд Π΅ΠΊΡΡ†ΠΈΡ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π°. Показано јС Π΄Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° сила Π»ΠΈΠΊΠ° ΠΈΠ·Π°Π·ΠΈΠ²Π° снаТан ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° ΡƒΠ³Π°ΠΎΠ½Ρƒ расподСлу каналисаних ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° ΠΊΡ€ΠΎΠ· ΠΊΡ€Π°Ρ‚ΠΊΠ΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. УстановљСно јС Π΄Π° су ΠΎΠ²Π΅ Π½ΠΎΠ²Π΅ појавС посСбно ΠΈΠ·Ρ€Π°ΠΆΠ΅Π½Π΅ ΠΊΠ°Π΄Π° сС Π±Ρ€Π·ΠΈΠ½Π° каналисаних чСстица ΠΏΠΎΠΊΠ»Π°ΠΏΠ° са Ρ„Π°Π·Π½ΠΎΠΌ Π±Ρ€Π·ΠΈΠ½ΠΎΠΌ квазиакустичног Ο€ ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π°. Анализа јС ΡƒΠΊΡ™ΡƒΡ‡ΠΈΠ»Π° Π³Π΅Π½Π΅Ρ€ΠΈΡΠ°ΡšΠ΅ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΡ… Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° којима јС ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈΠ³ΡƒΡˆΠ΅ΡšΠ°, Ρ€Π°Π΄ΠΈΡ˜ΡƒΡΠ° Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΠΈ ΠΏΠΎΡ‡Π΅Ρ‚Π½Π΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡ˜Π΅ каналисанС чСстицС Π½Π° ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ° ΡƒΠ½ΡƒΡ‚Π°Ρ€ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π˜Π·Π²Ρ€ΡˆΠ΅Π½ΠΎ јС ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° Π·Π° ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ° Π·Π° ΡΠ»ΡƒΡ‡Π°Ρ˜ Ρ˜Π΅Π΄Π½ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ Ρ‚ΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π’Π°ΠΊΠΎΡ’Π΅ јС ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½Π° рачунарска ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° каналисања чСстица ΠΊΠ°ΠΎ ΠΈ ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ просторнС ΠΈ ΡƒΠ³Π°ΠΎΠ½Π΅ расподСлС каналисаних чСстица Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈΡ… Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π°. Π£ наставку сС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π° ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° са SWNT(6, 4) Π³Π΄Π΅ сС ΡƒΠ·ΠΈΠΌΠ°Ρ˜Ρƒ Ρƒ ΠΎΠ±Π·ΠΈΡ€ Π΅Ρ„Π΅ΠΊΡ‚ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½ΠΎΠ³ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. Овај ΠΌΠΎΠ΄Π΅Π» сС користи Π·Π° Π°Π½Π°Π»ΠΈΡ‚ΠΈΡ‡ΠΊΠΎ ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎ Ρ€Π°Ρ‡ΡƒΠ½Π°ΡšΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° ΠΈ зауставнС силС Π½Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½ који сС ΠΊΡ€Π΅Ρ›Π΅ ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½ΠΎ са осом Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅Π²ΠΈΠΌΠ° ΠΊΠ°Π΄Π° јС Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π° њСговог ΠΊΡ€Π΅Ρ‚Π°ΡšΠ° ΡƒΠ½ΡƒΡ‚Π°Ρ€ ΠΈ Π²Π°Π½ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. ОпсСг Π±Ρ€Π·ΠΈΠ½Π° који сС Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° јС ΠΎΠ΄ 0.5 Π΄ΠΎ 15 a.u.. Π Π°Π·ΠΌΠ°Ρ‚Ρ€Π° сС ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π΅Ρ„Π΅ΠΊΠ°Ρ‚Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΡƒΠ³Π°ΠΎΠ½ΠΈΡ… ΠΌΠΎΠ΄ΠΎΠ²Π° Π½Π° зависност ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° ΠΎΠ΄ Π±Ρ€Π·ΠΈΠ½Π΅ ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ Ρ‚ΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π’Π°ΠΊΠΎΡ’Π΅ сС Ρ€Π°Ρ‡ΡƒΠ½Π° просторна ΠΈ ΡƒΠ³Π°ΠΎΠ½Π° Π΄ΠΈΡΡ‚Ρ€ΠΈΠ±ΡƒΡ†ΠΈΡ˜Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½ΠΎΠ³ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° ΠΈ ΠΏΠΎΡ€Π΅Π΄ΠΈ са ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅ΠΌ ΠΎΠ±ΠΈΡ‡Π½ΠΎΠ³ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° са Π½ΡƒΠ»Ρ‚ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈΠ³ΡƒΡˆΠ΅ΡšΠ°. На ΠΊΡ€Π°Ρ˜Ρƒ сС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π° ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° наСлСктрисаних чСстица са ΠΏΡ€Π°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡ€ΠΈΠ²Ρ™Π΅Π½ΠΈΠΌ јСднослојним Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈΠΌΠ° ΠΏΡ€ΠΈ условима каналисања ΠΊΠ°Π΄Π° јС ΡƒΡ€Π°Ρ‡ΡƒΠ½Π°Ρ‚Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π° ΡƒΠ³Ρ™Π΅Π½ΠΈΠΊΠ°. ΠŸΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° јС описана Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΠΌ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΈΠΌ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΎΠΌ са ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠΌΠ° ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈΠΌ ΠΈΠ· Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ нСзависних СкспСримСната Ρƒ Π²Π΅Π·ΠΈ са ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡΠΊΠΎΠΏΠΈΡ˜ΠΎΠΌ Π³ΡƒΠ±ΠΈΡ‚Π°ΠΊΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ Ρƒ ΡƒΠ³Ρ™Π΅Π½ΠΈΡ‡Π½ΠΈΠΌ наноструктурама. Π₯ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» сС користи Π·Π° ΠΈΠ·Ρ€Π°Ρ‡ΡƒΠ½Π°Π²Π°ΡšΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° ΠΈΠ½Π΄ΡƒΠΊΠΎΠ²Π°Π½ΠΎΠ³ ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° ΠΊΡ€ΠΎΠ· Ρ‡Π΅Ρ‚ΠΈΡ€ΠΈ ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚Π° Ρ‚ΠΈΠΏΠ° Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΠΏΡ€ΠΈ Π±Ρ€Π·ΠΈΠ½ΠΈ ΠΎΠ΄ 3 атомскС Ρ˜Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ° сС ΠΏΠΎΡ‚ΠΎΠΌ додајС Π½Π° Π”ΠΎΡ˜Π»-Π’Π°Ρ€Π½Π΅ΠΎΠ² атомски ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Ρƒ Ρ†ΠΈΡ™Ρƒ добијања ΡƒΠΊΡƒΠΏΠ½ΠΎΠ³ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Ρƒ ΠΏΡ€Π°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡ€ΠΈΠ²Ρ™Π΅Π½ΠΈΠΌ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈΠΌΠ°. На основу ΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½Π° симулира сС процСс каналисања протонског снопа ΠΈ ΠΎΠ΄Ρ€Π΅Ρ’ΡƒΡ˜Π΅ просторна ΠΈ ΡƒΠ³Π°ΠΎΠ½Π° расподСла каналисаних ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° ΠΊΡ€ΠΎΠ· Π·Π°ΠΊΡ€ΠΈΠ²Ρ™Π΅Π½Π΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΠΈ ΠΏΠΎΡ€Π΅Π΄Π΅ добијСни Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ са ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅ΠΌ ΠΊΠ°Π΄Π° сС Π½Π΅ ΡƒΠ·ΠΈΠΌΠ° Ρƒ ΠΎΠ±Π·ΠΈΡ€ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ°.In this dissertation the effects of dynamic polarization on charged particles channeling through various types of single – walled carbon nanotubes (SWNTs) are studied. At the very beginning of the analyze the interactions of charged particles with 4 different types of SWNTs by means of linearized two dimensional one and two fluid hydrodynamic models are studied. Types of SWNTs are (6, 4), (8, 6), (11, 9) and (15, 10). The models are used to calculate the image potential for a charged particle moving parallel to the axis of the SWNTs. Proton speeds between 1 and 10 a.u. are chosen. A proton that moves with average energy (MeV) will induce a strong dynamic polarization of valence electrons in the nanotubes which in turn will give rise to a sizeable image force on the proton, as well as a considerable energy loss due to the collective, or plasma, excitations of those electrons. The dynamic image force was shown to exert large influence in the angular distributions of protons channelled through short SWNTs. It is found that these quantities exhibit novel features when the particle speed matches the phase velocity of the quasiacoustic Ο€ plasmon. Numerical results are obtained to show the influence of the damping factor, the nanotube radius, and the particle position on the image potential inside the nanotube. Results for image potential in the one and two fluid hydrodynamic models are compared for different types of nanotubes. The spatial and angular distributions of protons are also computed and compared for the two models. After that, we study the interaction of charged particles with a SWNT(6, 4) under channelling conditions by means of the linearized, two dimensional (2D), two-fluid extended hydrodynamic model. We use the model to calculate analytically and numerically the image potential and the stopping force for a proton moving parallel to the axis of the SWNT, both inside and outside the nanotube at the speeds from 0.5 a.u. to 15 a.u.. The effects of different angular modes on the velocity dependence of the image potential are compared for a proton moving in different types of SWNTs. We also compute the spatial and angular distributions of protons in the 2D two-fluid extended hydrodynamic model and compare them with the 2D two-fluid hydrodynamic model with zero damping. At the end we investigate the interaction of charged particles with straight and bent single-walled carbon nanotubes under channelling conditions in the presence of dynamic polarization of the valence electrons in carbon nanotube wall. This polarization is described by a linearized, two-fluid hydrodynamic model with the parameters taken from recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nanostructures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at the speed of 3 atomic units. The image potential is then combined with the Doyle-Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Based on that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential

    The influence of dynamic polarization on charged particles interaction with carbon nanotubes in two - fluid hydrodynamic model

    Get PDF
    Π£ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ сС Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π΅Ρ„Π΅ΠΊΠ°Ρ‚Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Π½Π° каналисањС наСлСктрисаних чСстица ΠΊΡ€ΠΎΠ· Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ Ρ‚ΠΈΠΏΠΎΠ²Π΅ Ρ˜Π΅Π΄Π½ΠΎΡΠ»ΠΎΡ˜Π½ΠΈΡ… ΡƒΠ³Ρ™Π΅Π½ΠΈΡ‡Π½ΠΈΡ… Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ (SWNT). На ΠΏΠΎΡ‡Π΅Ρ‚ΠΊΡƒ Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° сС ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° наСлСктрисаних чСстица са Ρ‡Π΅Ρ‚ΠΈΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π° Ρ‚ΠΈΠΏΠ° Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ Ρ˜Π΅Π΄Π½ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. Π’ΠΈΠΏΠΎΠ²ΠΈ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ који сС Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Ρ˜Ρƒ су SWNT(6, 4), SWNT(8, 6), SWNT(11, 9) ΠΈ SWNT(15, 10). ΠŸΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ сС користС Π·Π° Ρ€Π°Ρ‡ΡƒΠ½Π°ΡšΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° Π³Π΄Π΅ сС Π½Π° Ρ‚Π°Ρ˜ Π½Π°Ρ‡ΠΈΠ½ Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ наСлСктрисаних чСстица Π΄ΡƒΠΆ ΠΏΡƒΡ‚Π°ΡšΠ΅ ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½Π΅ са осом Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π‘Ρ€Π·ΠΈΠ½Π΅ ΠΊΡ€Π΅Ρ‚Π°ΡšΠ° ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° сС ΡƒΠ·ΠΈΠΌΠ°Ρ˜Ρƒ Ρƒ опсСгу ΠΎΠ΄ 1 Π΄ΠΎ 10 a.u.. ΠŸΡ€ΠΎΡ‚ΠΎΠ½ ΡΡ€Π΅Π΄ΡšΠ΅ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΡ‡ΠΊΠ΅ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ (Ρ€Π΅Π΄Π° MeV) ΠΈΠ·Π°Π·ΠΈΠ²Π° ΠΏΠΎΡ˜Π°Π²Ρƒ снаТнС Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π° Π½Π° ΠΎΠΌΠΎΡ‚Π°Ρ‡Ρƒ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΡˆΡ‚ΠΎ ΠΊΠ°ΠΎ Π΅Ρ„Π΅ΠΊΠ°Ρ‚ ΠΈΠΌΠ° ΠΈΠ½Π΄ΡƒΠΊΠΎΠ²Π°ΡšΠ΅ Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ силС Π»ΠΈΠΊΠ° Π½Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½, односно ΠΏΠΎΡ˜Π°Π²Ρƒ Π³ΡƒΠ±ΠΈΡ‚Π°ΠΊΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ услСд Π΅ΠΊΡΡ†ΠΈΡ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π°. Показано јС Π΄Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° сила Π»ΠΈΠΊΠ° ΠΈΠ·Π°Π·ΠΈΠ²Π° снаТан ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° ΡƒΠ³Π°ΠΎΠ½Ρƒ расподСлу каналисаних ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° ΠΊΡ€ΠΎΠ· ΠΊΡ€Π°Ρ‚ΠΊΠ΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. УстановљСно јС Π΄Π° су ΠΎΠ²Π΅ Π½ΠΎΠ²Π΅ појавС посСбно ΠΈΠ·Ρ€Π°ΠΆΠ΅Π½Π΅ ΠΊΠ°Π΄Π° сС Π±Ρ€Π·ΠΈΠ½Π° каналисаних чСстица ΠΏΠΎΠΊΠ»Π°ΠΏΠ° са Ρ„Π°Π·Π½ΠΎΠΌ Π±Ρ€Π·ΠΈΠ½ΠΎΠΌ квазиакустичног Ο€ ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π°. Анализа јС ΡƒΠΊΡ™ΡƒΡ‡ΠΈΠ»Π° Π³Π΅Π½Π΅Ρ€ΠΈΡΠ°ΡšΠ΅ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΡ… Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° којима јС ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈΠ³ΡƒΡˆΠ΅ΡšΠ°, Ρ€Π°Π΄ΠΈΡ˜ΡƒΡΠ° Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΠΈ ΠΏΠΎΡ‡Π΅Ρ‚Π½Π΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡ˜Π΅ каналисанС чСстицС Π½Π° ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ° ΡƒΠ½ΡƒΡ‚Π°Ρ€ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π˜Π·Π²Ρ€ΡˆΠ΅Π½ΠΎ јС ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° Π·Π° ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ° Π·Π° ΡΠ»ΡƒΡ‡Π°Ρ˜ Ρ˜Π΅Π΄Π½ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ Ρ‚ΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π’Π°ΠΊΠΎΡ’Π΅ јС ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½Π° рачунарска ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° каналисања чСстица ΠΊΠ°ΠΎ ΠΈ ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ просторнС ΠΈ ΡƒΠ³Π°ΠΎΠ½Π΅ расподСлС каналисаних чСстица Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈΡ… Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π°. Π£ наставку сС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π° ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° са SWNT(6, 4) Π³Π΄Π΅ сС ΡƒΠ·ΠΈΠΌΠ°Ρ˜Ρƒ Ρƒ ΠΎΠ±Π·ΠΈΡ€ Π΅Ρ„Π΅ΠΊΡ‚ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½ΠΎΠ³ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. Овај ΠΌΠΎΠ΄Π΅Π» сС користи Π·Π° Π°Π½Π°Π»ΠΈΡ‚ΠΈΡ‡ΠΊΠΎ ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎ Ρ€Π°Ρ‡ΡƒΠ½Π°ΡšΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° ΠΈ зауставнС силС Π½Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½ који сС ΠΊΡ€Π΅Ρ›Π΅ ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½ΠΎ са осом Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅Π²ΠΈΠΌΠ° ΠΊΠ°Π΄Π° јС Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π° њСговог ΠΊΡ€Π΅Ρ‚Π°ΡšΠ° ΡƒΠ½ΡƒΡ‚Π°Ρ€ ΠΈ Π²Π°Π½ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. ОпсСг Π±Ρ€Π·ΠΈΠ½Π° који сС Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° јС ΠΎΠ΄ 0.5 Π΄ΠΎ 15 a.u.. Π Π°Π·ΠΌΠ°Ρ‚Ρ€Π° сС ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π΅Ρ„Π΅ΠΊΠ°Ρ‚Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΡƒΠ³Π°ΠΎΠ½ΠΈΡ… ΠΌΠΎΠ΄ΠΎΠ²Π° Π½Π° зависност ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° ΠΎΠ΄ Π±Ρ€Π·ΠΈΠ½Π΅ ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ Ρ‚ΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π’Π°ΠΊΠΎΡ’Π΅ сС Ρ€Π°Ρ‡ΡƒΠ½Π° просторна ΠΈ ΡƒΠ³Π°ΠΎΠ½Π° Π΄ΠΈΡΡ‚Ρ€ΠΈΠ±ΡƒΡ†ΠΈΡ˜Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½ΠΎΠ³ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° ΠΈ ΠΏΠΎΡ€Π΅Π΄ΠΈ са ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅ΠΌ ΠΎΠ±ΠΈΡ‡Π½ΠΎΠ³ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° са Π½ΡƒΠ»Ρ‚ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈΠ³ΡƒΡˆΠ΅ΡšΠ°. На ΠΊΡ€Π°Ρ˜Ρƒ сС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π° ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° наСлСктрисаних чСстица са ΠΏΡ€Π°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡ€ΠΈΠ²Ρ™Π΅Π½ΠΈΠΌ јСднослојним Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈΠΌΠ° ΠΏΡ€ΠΈ условима каналисања ΠΊΠ°Π΄Π° јС ΡƒΡ€Π°Ρ‡ΡƒΠ½Π°Ρ‚Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π° ΡƒΠ³Ρ™Π΅Π½ΠΈΠΊΠ°. ΠŸΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° јС описана Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΠΌ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΈΠΌ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΎΠΌ са ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠΌΠ° ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈΠΌ ΠΈΠ· Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ нСзависних СкспСримСната Ρƒ Π²Π΅Π·ΠΈ са ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡΠΊΠΎΠΏΠΈΡ˜ΠΎΠΌ Π³ΡƒΠ±ΠΈΡ‚Π°ΠΊΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ Ρƒ ΡƒΠ³Ρ™Π΅Π½ΠΈΡ‡Π½ΠΈΠΌ наноструктурама. Π₯ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» сС користи Π·Π° ΠΈΠ·Ρ€Π°Ρ‡ΡƒΠ½Π°Π²Π°ΡšΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° ΠΈΠ½Π΄ΡƒΠΊΠΎΠ²Π°Π½ΠΎΠ³ ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° ΠΊΡ€ΠΎΠ· Ρ‡Π΅Ρ‚ΠΈΡ€ΠΈ ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚Π° Ρ‚ΠΈΠΏΠ° Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΠΏΡ€ΠΈ Π±Ρ€Π·ΠΈΠ½ΠΈ ΠΎΠ΄ 3 атомскС Ρ˜Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ° сС ΠΏΠΎΡ‚ΠΎΠΌ додајС Π½Π° Π”ΠΎΡ˜Π»-Π’Π°Ρ€Π½Π΅ΠΎΠ² атомски ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Ρƒ Ρ†ΠΈΡ™Ρƒ добијања ΡƒΠΊΡƒΠΏΠ½ΠΎΠ³ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Ρƒ ΠΏΡ€Π°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡ€ΠΈΠ²Ρ™Π΅Π½ΠΈΠΌ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈΠΌΠ°. На основу ΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½Π° симулира сС процСс каналисања протонског снопа ΠΈ ΠΎΠ΄Ρ€Π΅Ρ’ΡƒΡ˜Π΅ просторна ΠΈ ΡƒΠ³Π°ΠΎΠ½Π° расподСла каналисаних ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° ΠΊΡ€ΠΎΠ· Π·Π°ΠΊΡ€ΠΈΠ²Ρ™Π΅Π½Π΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΠΈ ΠΏΠΎΡ€Π΅Π΄Π΅ добијСни Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ са ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅ΠΌ ΠΊΠ°Π΄Π° сС Π½Π΅ ΡƒΠ·ΠΈΠΌΠ° Ρƒ ΠΎΠ±Π·ΠΈΡ€ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ°.In this dissertation the effects of dynamic polarization on charged particles channeling through various types of single – walled carbon nanotubes (SWNTs) are studied. At the very beginning of the analyze the interactions of charged particles with 4 different types of SWNTs by means of linearized two dimensional one and two fluid hydrodynamic models are studied. Types of SWNTs are (6, 4), (8, 6), (11, 9) and (15, 10). The models are used to calculate the image potential for a charged particle moving parallel to the axis of the SWNTs. Proton speeds between 1 and 10 a.u. are chosen. A proton that moves with average energy (MeV) will induce a strong dynamic polarization of valence electrons in the nanotubes which in turn will give rise to a sizeable image force on the proton, as well as a considerable energy loss due to the collective, or plasma, excitations of those electrons. The dynamic image force was shown to exert large influence in the angular distributions of protons channelled through short SWNTs. It is found that these quantities exhibit novel features when the particle speed matches the phase velocity of the quasiacoustic Ο€ plasmon. Numerical results are obtained to show the influence of the damping factor, the nanotube radius, and the particle position on the image potential inside the nanotube. Results for image potential in the one and two fluid hydrodynamic models are compared for different types of nanotubes. The spatial and angular distributions of protons are also computed and compared for the two models. After that, we study the interaction of charged particles with a SWNT(6, 4) under channelling conditions by means of the linearized, two dimensional (2D), two-fluid extended hydrodynamic model. We use the model to calculate analytically and numerically the image potential and the stopping force for a proton moving parallel to the axis of the SWNT, both inside and outside the nanotube at the speeds from 0.5 a.u. to 15 a.u.. The effects of different angular modes on the velocity dependence of the image potential are compared for a proton moving in different types of SWNTs. We also compute the spatial and angular distributions of protons in the 2D two-fluid extended hydrodynamic model and compare them with the 2D two-fluid hydrodynamic model with zero damping. At the end we investigate the interaction of charged particles with straight and bent single-walled carbon nanotubes under channelling conditions in the presence of dynamic polarization of the valence electrons in carbon nanotube wall. This polarization is described by a linearized, two-fluid hydrodynamic model with the parameters taken from recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nanostructures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at the speed of 3 atomic units. The image potential is then combined with the Doyle-Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Based on that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential

    The influence of dynamic polarization on charged particles interaction with carbon nanotubes in two - fluid hydrodynamic model

    Get PDF
    Π£ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ сС Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π΅Ρ„Π΅ΠΊΠ°Ρ‚Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Π½Π° каналисањС наСлСктрисаних чСстица ΠΊΡ€ΠΎΠ· Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ Ρ‚ΠΈΠΏΠΎΠ²Π΅ Ρ˜Π΅Π΄Π½ΠΎΡΠ»ΠΎΡ˜Π½ΠΈΡ… ΡƒΠ³Ρ™Π΅Π½ΠΈΡ‡Π½ΠΈΡ… Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ (SWNT). На ΠΏΠΎΡ‡Π΅Ρ‚ΠΊΡƒ Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° сС ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° наСлСктрисаних чСстица са Ρ‡Π΅Ρ‚ΠΈΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π° Ρ‚ΠΈΠΏΠ° Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ Ρ˜Π΅Π΄Π½ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. Π’ΠΈΠΏΠΎΠ²ΠΈ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ који сС Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Ρ˜Ρƒ су SWNT(6, 4), SWNT(8, 6), SWNT(11, 9) ΠΈ SWNT(15, 10). ΠŸΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ сС користС Π·Π° Ρ€Π°Ρ‡ΡƒΠ½Π°ΡšΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° Π³Π΄Π΅ сС Π½Π° Ρ‚Π°Ρ˜ Π½Π°Ρ‡ΠΈΠ½ Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ наСлСктрисаних чСстица Π΄ΡƒΠΆ ΠΏΡƒΡ‚Π°ΡšΠ΅ ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½Π΅ са осом Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π‘Ρ€Π·ΠΈΠ½Π΅ ΠΊΡ€Π΅Ρ‚Π°ΡšΠ° ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° сС ΡƒΠ·ΠΈΠΌΠ°Ρ˜Ρƒ Ρƒ опсСгу ΠΎΠ΄ 1 Π΄ΠΎ 10 a.u.. ΠŸΡ€ΠΎΡ‚ΠΎΠ½ ΡΡ€Π΅Π΄ΡšΠ΅ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΡ‡ΠΊΠ΅ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ (Ρ€Π΅Π΄Π° MeV) ΠΈΠ·Π°Π·ΠΈΠ²Π° ΠΏΠΎΡ˜Π°Π²Ρƒ снаТнС Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π° Π½Π° ΠΎΠΌΠΎΡ‚Π°Ρ‡Ρƒ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΡˆΡ‚ΠΎ ΠΊΠ°ΠΎ Π΅Ρ„Π΅ΠΊΠ°Ρ‚ ΠΈΠΌΠ° ΠΈΠ½Π΄ΡƒΠΊΠΎΠ²Π°ΡšΠ΅ Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ силС Π»ΠΈΠΊΠ° Π½Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½, односно ΠΏΠΎΡ˜Π°Π²Ρƒ Π³ΡƒΠ±ΠΈΡ‚Π°ΠΊΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ услСд Π΅ΠΊΡΡ†ΠΈΡ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π°. Показано јС Π΄Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° сила Π»ΠΈΠΊΠ° ΠΈΠ·Π°Π·ΠΈΠ²Π° снаТан ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° ΡƒΠ³Π°ΠΎΠ½Ρƒ расподСлу каналисаних ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° ΠΊΡ€ΠΎΠ· ΠΊΡ€Π°Ρ‚ΠΊΠ΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. УстановљСно јС Π΄Π° су ΠΎΠ²Π΅ Π½ΠΎΠ²Π΅ појавС посСбно ΠΈΠ·Ρ€Π°ΠΆΠ΅Π½Π΅ ΠΊΠ°Π΄Π° сС Π±Ρ€Π·ΠΈΠ½Π° каналисаних чСстица ΠΏΠΎΠΊΠ»Π°ΠΏΠ° са Ρ„Π°Π·Π½ΠΎΠΌ Π±Ρ€Π·ΠΈΠ½ΠΎΠΌ квазиакустичног Ο€ ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π°. Анализа јС ΡƒΠΊΡ™ΡƒΡ‡ΠΈΠ»Π° Π³Π΅Π½Π΅Ρ€ΠΈΡΠ°ΡšΠ΅ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΈΡ… Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° којима јС ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈΠ³ΡƒΡˆΠ΅ΡšΠ°, Ρ€Π°Π΄ΠΈΡ˜ΡƒΡΠ° Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΠΈ ΠΏΠΎΡ‡Π΅Ρ‚Π½Π΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡ˜Π΅ каналисанС чСстицС Π½Π° ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ° ΡƒΠ½ΡƒΡ‚Π°Ρ€ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π˜Π·Π²Ρ€ΡˆΠ΅Π½ΠΎ јС ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ Π΄ΠΎΠ±ΠΈΡ˜Π΅Π½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° Π·Π° ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ° Π·Π° ΡΠ»ΡƒΡ‡Π°Ρ˜ Ρ˜Π΅Π΄Π½ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΈ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ Ρ‚ΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π’Π°ΠΊΠΎΡ’Π΅ јС ΠΈΠ·Π²Ρ€ΡˆΠ΅Π½Π° рачунарска ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° каналисања чСстица ΠΊΠ°ΠΎ ΠΈ ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΠ΅ просторнС ΠΈ ΡƒΠ³Π°ΠΎΠ½Π΅ расподСлС каналисаних чСстица Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚ΠΈΡ… Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π°. Π£ наставку сС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π° ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° са SWNT(6, 4) Π³Π΄Π΅ сС ΡƒΠ·ΠΈΠΌΠ°Ρ˜Ρƒ Ρƒ ΠΎΠ±Π·ΠΈΡ€ Π΅Ρ„Π΅ΠΊΡ‚ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ Ρƒ ΠΎΠΊΠ²ΠΈΡ€Ρƒ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½ΠΎΠ³ ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½ΠΎΠ³ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. Овај ΠΌΠΎΠ΄Π΅Π» сС користи Π·Π° Π°Π½Π°Π»ΠΈΡ‚ΠΈΡ‡ΠΊΠΎ ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎ Ρ€Π°Ρ‡ΡƒΠ½Π°ΡšΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° ΠΈ зауставнС силС Π½Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½ који сС ΠΊΡ€Π΅Ρ›Π΅ ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½ΠΎ са осом Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅Π²ΠΈΠΌΠ° ΠΊΠ°Π΄Π° јС Ρ‚Ρ€Π°Ρ˜Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡ˜Π° њСговог ΠΊΡ€Π΅Ρ‚Π°ΡšΠ° ΡƒΠ½ΡƒΡ‚Π°Ρ€ ΠΈ Π²Π°Π½ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. ОпсСг Π±Ρ€Π·ΠΈΠ½Π° који сС Ρ€Π°Π·ΠΌΠ°Ρ‚Ρ€Π° јС ΠΎΠ΄ 0.5 Π΄ΠΎ 15 a.u.. Π Π°Π·ΠΌΠ°Ρ‚Ρ€Π° сС ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π΅Ρ„Π΅ΠΊΠ°Ρ‚Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΡƒΠ³Π°ΠΎΠ½ΠΈΡ… ΠΌΠΎΠ΄ΠΎΠ²Π° Π½Π° зависност ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° ΠΎΠ΄ Π±Ρ€Π·ΠΈΠ½Π΅ ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ Ρ‚ΠΈΠΏΠΎΠ²Π΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ. Π’Π°ΠΊΠΎΡ’Π΅ сС Ρ€Π°Ρ‡ΡƒΠ½Π° просторна ΠΈ ΡƒΠ³Π°ΠΎΠ½Π° Π΄ΠΈΡΡ‚Ρ€ΠΈΠ±ΡƒΡ†ΠΈΡ˜Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ ΠΏΡ€ΠΎΡˆΠΈΡ€Π΅Π½ΠΎΠ³ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° ΠΈ ΠΏΠΎΡ€Π΅Π΄ΠΈ са ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅ΠΌ ΠΎΠ±ΠΈΡ‡Π½ΠΎΠ³ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° са Π½ΡƒΠ»Ρ‚ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈΠ³ΡƒΡˆΠ΅ΡšΠ°. На ΠΊΡ€Π°Ρ˜Ρƒ сС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π° ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° наСлСктрисаних чСстица са ΠΏΡ€Π°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡ€ΠΈΠ²Ρ™Π΅Π½ΠΈΠΌ јСднослојним Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈΠΌΠ° ΠΏΡ€ΠΈ условима каналисања ΠΊΠ°Π΄Π° јС ΡƒΡ€Π°Ρ‡ΡƒΠ½Π°Ρ‚Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π° ΡƒΠ³Ρ™Π΅Π½ΠΈΠΊΠ°. ΠŸΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° јС описана Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΠΌ Π΄Π²ΠΎΡ„Π»ΡƒΠΈΠ΄Π½ΠΈΠΌ Ρ…ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΎΠΌ са ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠΌΠ° ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈΠΌ ΠΈΠ· Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ нСзависних СкспСримСната Ρƒ Π²Π΅Π·ΠΈ са ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡΠΊΠΎΠΏΠΈΡ˜ΠΎΠΌ Π³ΡƒΠ±ΠΈΡ‚Π°ΠΊΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ Ρƒ ΡƒΠ³Ρ™Π΅Π½ΠΈΡ‡Π½ΠΈΠΌ наноструктурама. Π₯ΠΈΠ΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» сС користи Π·Π° ΠΈΠ·Ρ€Π°Ρ‡ΡƒΠ½Π°Π²Π°ΡšΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π»ΠΈΠΊΠ° ΠΈΠ½Π΄ΡƒΠΊΠΎΠ²Π°Π½ΠΎΠ³ ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° ΠΊΡ€ΠΎΠ· Ρ‡Π΅Ρ‚ΠΈΡ€ΠΈ ΠΏΠΎΠΌΠ΅Π½ΡƒΡ‚Π° Ρ‚ΠΈΠΏΠ° Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΠΏΡ€ΠΈ Π±Ρ€Π·ΠΈΠ½ΠΈ ΠΎΠ΄ 3 атомскС Ρ˜Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ° сС ΠΏΠΎΡ‚ΠΎΠΌ додајС Π½Π° Π”ΠΎΡ˜Π»-Π’Π°Ρ€Π½Π΅ΠΎΠ² атомски ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Ρƒ Ρ†ΠΈΡ™Ρƒ добијања ΡƒΠΊΡƒΠΏΠ½ΠΎΠ³ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Ρƒ ΠΏΡ€Π°Π²ΠΈΠΌ ΠΈ Π·Π°ΠΊΡ€ΠΈΠ²Ρ™Π΅Π½ΠΈΠΌ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈΠΌΠ°. На основу ΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½Π° симулира сС процСс каналисања протонског снопа ΠΈ ΠΎΠ΄Ρ€Π΅Ρ’ΡƒΡ˜Π΅ просторна ΠΈ ΡƒΠ³Π°ΠΎΠ½Π° расподСла каналисаних ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° ΠΊΡ€ΠΎΠ· Π·Π°ΠΊΡ€ΠΈΠ²Ρ™Π΅Π½Π΅ Π½Π°Π½ΠΎΡ†Π΅Π²ΠΈ ΠΈ ΠΏΠΎΡ€Π΅Π΄Π΅ добијСни Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ са ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅ΠΌ ΠΊΠ°Π΄Π° сС Π½Π΅ ΡƒΠ·ΠΈΠΌΠ° Ρƒ ΠΎΠ±Π·ΠΈΡ€ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° ΠΏΠΎΠ»Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π»ΠΈΠΊΠ°.In this dissertation the effects of dynamic polarization on charged particles channeling through various types of single – walled carbon nanotubes (SWNTs) are studied. At the very beginning of the analyze the interactions of charged particles with 4 different types of SWNTs by means of linearized two dimensional one and two fluid hydrodynamic models are studied. Types of SWNTs are (6, 4), (8, 6), (11, 9) and (15, 10). The models are used to calculate the image potential for a charged particle moving parallel to the axis of the SWNTs. Proton speeds between 1 and 10 a.u. are chosen. A proton that moves with average energy (MeV) will induce a strong dynamic polarization of valence electrons in the nanotubes which in turn will give rise to a sizeable image force on the proton, as well as a considerable energy loss due to the collective, or plasma, excitations of those electrons. The dynamic image force was shown to exert large influence in the angular distributions of protons channelled through short SWNTs. It is found that these quantities exhibit novel features when the particle speed matches the phase velocity of the quasiacoustic Ο€ plasmon. Numerical results are obtained to show the influence of the damping factor, the nanotube radius, and the particle position on the image potential inside the nanotube. Results for image potential in the one and two fluid hydrodynamic models are compared for different types of nanotubes. The spatial and angular distributions of protons are also computed and compared for the two models. After that, we study the interaction of charged particles with a SWNT(6, 4) under channelling conditions by means of the linearized, two dimensional (2D), two-fluid extended hydrodynamic model. We use the model to calculate analytically and numerically the image potential and the stopping force for a proton moving parallel to the axis of the SWNT, both inside and outside the nanotube at the speeds from 0.5 a.u. to 15 a.u.. The effects of different angular modes on the velocity dependence of the image potential are compared for a proton moving in different types of SWNTs. We also compute the spatial and angular distributions of protons in the 2D two-fluid extended hydrodynamic model and compare them with the 2D two-fluid hydrodynamic model with zero damping. At the end we investigate the interaction of charged particles with straight and bent single-walled carbon nanotubes under channelling conditions in the presence of dynamic polarization of the valence electrons in carbon nanotube wall. This polarization is described by a linearized, two-fluid hydrodynamic model with the parameters taken from recent modelling of several independent experiments on electron energy loss spectroscopy of carbon nanostructures. We use the hydrodynamic model to calculate the image potential for protons moving through four types of SWNTs at the speed of 3 atomic units. The image potential is then combined with the Doyle-Turner atomic potential to obtain the total potential in the bent carbon nanotubes. Based on that potential, we also compute the spatial and angular distributions of protons channeled through the bent carbon nanotubes, and compare the results with the distributions obtained without taking into account the image potential

    Image potential and stopping force in the interaction of fast ions with carbon nanotubes: The extended two-fluid hydrodynamic model

    No full text
    We study the interaction of charged particles with a (6, 4) single-walled carbon nanotube (SWNT) under channeling conditions by means of the linearized, two dimensional (2D), two-fluid extended hydrodynamic model. We use the model to calculate analytically and numerically the image potential and the stopping force for a proton moving parallel to the axis of the SWNT, both inside and outside the nanotube at the speeds from 0.5 a.u. to 15 a.u. The effects of different angular modes on the velocity dependence of the image potential are compared for a proton moving in different types of SWNTs. We also compute the spatial and angular distributions of protons in the 2D two-fluid extended hydrodynamic model and compare them with the 2D two-fluid hydrodynamic model with zero damping. (C) 2015 Elsevier B.V. All rights reserved

    Carbon Nanotubes Characterization by Channeled Fast Ions Spatial and Angular Distribution Fingerprints

    No full text
    In this paper we investigate possibility of carbon nanotubes characterization by differentiation in spatial and angular distribution fingerprints obtained by fast ions channeling. We analyze straight single walled carbon nanotubes (SWNTs) interacting with fast ion beams. We calculate the image potential for protons moving through the four types of SWNTs at the speeds of 3 a.u.. We calculate total potential in straight carbon nanotubes. Interaction of channelled ions with nanotube electrons we calculate by linearized, two dimensional (2D), extended two-fluid hydrodynamic model. We simulate ion beams channelling through the four types of SWNTs under calculated conditions of interaction and calculate spatial and angular distributions of channelled particles what we use as method for different SWNTs characterization.5th Mediterranean Conference on Embedded Computing (MECO), Jun 12-16, 2016, Bar, Montenegr

    Wake effect in the interaction of an external charged particle with a graphene-sapphire-graphene structure due to excitation of plasmon-phonon hybrid modes

    No full text
    We study the wake effect due to excitation of a plasmon-phonon hybrid mode in a sandwich-like structure consisting of two doped graphene sheets, separated by a layer of Al2O3 (sapphire), which is induced by an external charged particle moving parallel to the structure. The response function of each graphene is obtained using two approaches within the random phase approximation: an ab initio method that includes all electronic bands in graphene and a computationally less demanding method based on the massless Dirac fermion (MDF) approximation for the low-energy excitations of electrons in the Ο€ bands. The response of the sapphire layer is described by a dielectric function consisting of several Lorentzian terms. We evaluate the total electrostatic potential in the plane of the upper graphene sheet for a particle moving at the sub-threshold speed for the wake effect in a single, free graphene. We show that, when the space between graphene sheets is air, there is only a sharp, somewhat asymmetric peak in the potential at the position of the particle. On the other hand, when the space is filled with sapphire, there is a prominent wake pattern in the potential behind the particle resulting from a low-frequency plasmon-phonon mode. It can be noted that the analytical MDF model reproduces the overall shape and the period of quasi-oscillations in the wake potential obtained from the ab initio calculations.Bucharest CA 15107 Fall Meeting : September 6-7, Bucharest, Romania, 2018
    corecore