65 research outputs found

    Experimental Study of Natural Convective Flow over a Hot Horizontal Rhombus Cylinder Immersed in Water via PIV Technique

    Get PDF
    Natural convective flow over a horizontal cylinder is a phenomenon used in many industries such as heat transfer from an electrical wire, heat exchanger, pipe heat transfer, etc. In this research, fluid dynamics of natural convective flow over a horizontal rhombus cylinder, with uniform heat flux, is investigated by using two-dimensional Particle Image Velocimetry (PIV) Technique. Experiments are carried out in a cubical tank full of water having an interface with air and the cylinder is placed horizontally inside the tank. The heater is turned on for 40s and the effects of heater's power and the height of water above the cylinder are surveyed. The experiments are carried out in three different heights of water and two different heater’s powers in which Rayleigh number changes from 1.33×107 to 1.76×107. The emitted heat flux causes the buoyancy force to be made and the main branch of flow to be formed. Then, moving up the main branch flow through the stationary water generates two equal anti-direction vortexes. These vortexes are developed when they reach the free surface. The results indicate that the flow pattern changes for different values of water height and heater’s power

    On Actively Teaching the Crowd to Classify

    Get PDF
    Is it possible to teach workers while crowdsourcing classification tasks? Amongst the challenges: (a) workers have different (unknown) skills, competence, and learning rate to which the teaching must be adapted, (b) feedback on the workers’ progress is limited, (c) we may not have informative features for our data (otherwise crowdsourcing may be unnecessary). We propose a natural Bayesian model of the workers, modeling them as a learning entity with an initial skill, competence, and dynamics. We then show how a teaching system can exploit this model to interactively teach the workers. Our model uses feedback to adapt the teaching process to each worker, based on priors over hypotheses elicited from the crowd. Our experiments carried out on both simulated workers and real image annotation tasks on Amazon Mechanical Turk show the effectiveness of crowd-teaching systems

    Results from a Prototype Proton-CT Head Scanner

    Get PDF
    We are exploring low-dose proton radiography and computed tomography (pCT) as techniques to improve the accuracy of proton treatment planning and to provide artifact-free images for verification and adaptive therapy at the time of treatment. Here we report on comprehensive beam test results with our prototype pCT head scanner. The detector system and data acquisition attain a sustained rate of more than a million protons individually measured per second, allowing a full CT scan to be completed in six minutes or less of beam time. In order to assess the performance of the scanner for proton radiography as well as computed tomography, we have performed numerous scans of phantoms at the Northwestern Medicine Chicago Proton Center including a custom phantom designed to assess the spatial resolution, a phantom to assess the measurement of relative stopping power, and a dosimetry phantom. Some images, performance, and dosimetry results from those phantom scans are presented together with a description of the instrument, the data acquisition system, and the calibration methods.Comment: Conference on the Application of Accelerators in Research and Industry, CAARI 2016, 30 October to 4 November 2016, Ft. Worth, TX, US

    Mutations in GJB2 as Major Causes of Autosomal Recessive Non-Syndromic Hearing Loss: First Report of c.299-300delAT Mutation in Kurdish Population of Iran

    Get PDF
    Background and Objectives: : Autosomal recessive non-syndromic hearing loss (ARNSHL) with genetic origin is common (1/2000 births). ARNSHL can be associated with mutations in gap junction protein beta 2 (GJB2). To this end, this cohort investigation aimed to find the contribution of GJB2 gene mutations with the genotype-phenotype correlations in 45 ARNSHL cases in the Kurdish population. Subjects and Methods: : Genomic DNA was extracted from a total of 45 ARNSHL families. The linkage analysis with 3 short tandem repeat markers linked to GJB2 was performed on 45 ARNSHL families. Only 9 of these families were linked to the DFNB1 locus. All the 45 families who took part were sequenced for confirmation linkage analysis (to perform a large project). Results: : A total of three different mutations were determined. Two of which [c.35delG and c.-23+1G>A (IVS1+1G>A)] were previously reported but (c.299-300delAT) mutation was novel in the Kurdish population. The homozygous pathogenic mutations of GJB2 gene was observed in nine out of the 45 families (20%), also heterozygous genotype (c.35delG/N)+(c.-23+1G>A/c.-23+1G>A) were observed in 4/45 families (8.8%). The degree of hearing loss (HL) in patients with other mutations was less severe than patients with c.35delG homozygous mutation (p<0.001). Conclusions: : Our data suggest that GJB2 mutations constitute 20% of the etiology of ARNSHL in Iran; moreover, the c.35delG mutation is the most common HL cause in the Kurdish population. Therefore, these mutations should be included in the molecular testing of HL in this populatio

    Pitting in the water/hydrocarbon boundary region of pipelines - Effect of corrosion inhibitors

    No full text
    The boundary conditions leading to pitting in pipelines in the water/hydrocarbon (HC) interface region of the bottom-of-The-line (BOL) liquid were studied using electrochemical noise (ECN) with specially developed evaluation software. It was proved that intermittent surface wetting with HC and brine can increase the likelihood of pitting in the HC/brine boundary region of the pipeline steel. The frequency of the phase boundary movement affects the pitting intensity. Corrosive effects were strongly dependent on the presence of inhibitors, its concentration and phase behaviour influenced by isopropanol. Increasing the inhibitor concentration mitigates pit formation in all surface regions. ECN measurements in combination with the in-house developed evaluation software proved to be a sensitive tool to quantify parameter effects in short exposure times. © 2013 by NACE International

    Results from a Prototype Proton-CT Head Scanner

    Get PDF
    We are exploring low-dose proton radiography and computed tomography (pCT) as techniques to improve the accuracy of proton treatment planning and to provide artifact-free images for verification and adaptive therapy at the time of treatment. Here we report on comprehensive beam test results with our prototype pCT head scanner. The detector system and data acquisition attain a sustained rate of more than a million protons individually measured per second, allowing a full CT scan to be completed in six minutes or less of beam time. In order to assess the performance of the scanner for proton radiography as well as computed tomography, we have performed numerous scans of phantoms at the Northwestern Medicine Chicago Proton Center including a custom phantom designed to assess the spatial resolution, a phantom to assess the measurement of relative stopping power, and a dosimetry phantom. Some images, performance, and dosimetry results from those phantom scans are presented together with a description of the instrument, the data acquisition system, and the calibration methods

    Electrochemical oxidation of Naproxen in aqueous matrices: Elucidating the intermediates’ eco-toxicity, by assessing its degradation pathways via experimental and density functional theory (DFT) approaches

    No full text
    The removal of the non-steroidal anti-inflammatory drug (NSAID) Naproxen (NAX) in water by hydroxyl radicals (•OH) was performed by electrochemical advanced oxidation processes either with Pt or BDD anodes and a 3D carbon felt cathode. The degradation of NAX by (•OH vs electrolysis time) was well fitted to a pseudo-first-order reaction rate kinetic. The detected reaction intermediates (aromatic compounds and carboxylic acids) were experimentally monitored during the process via LC, while density functional theory (DFT) was applied to uncover undetected intermediates, some for the first time in literature. The formation of toxic intermediates with higher toxicity than NAX were identified, such as IMS4b (6-Methoxy-1-[1-(6-methoxynaphthalen-2-yl) ethyl] naphthalen-2-ol), catechol, and glycolic acid. Based on these data, a detailed oxidation pathway of NAX by •OH was proposed. The evolution of solution toxicity indicated that the formed toxic intermediates were subsequently removed during the TOC removal process. Finally, almost complete mineralization of NAX was achieved in simulated urine or wastewater by the electro-Fenton treatment, with an optimized dose of iron as catalyst, showing the EAOPs’ potential to efficiently remove NAX even from challenging matrices. In extension, the strategies developed can be applied to the treatment of other NSAIDs
    • …
    corecore