14 research outputs found

    Critical behavior of thermopower and conductivity at the metal-insulator transition in high-mobility Si-MOSFET's

    Get PDF
    This letter reports thermopower and conductivity measurements through the metal-insulator transition for 2-dimensional electron gases in high mobility Si-MOSFET's. At low temperatures both thermopower and conductivity show critical behavior as a function of electron density which is very similar to that expected for an Anderson transition. In particular, when approaching the critical density from the metallic side the diffusion thermopower appears to diverge and the conductivity vanishes. On the insulating side the thermopower shows an upturn with decreasing temperature.Comment: 4 pages with 3 figure

    Diffusion Thermopower at Even Denominator Fractions

    Get PDF
    We compute the electron diffusion thermopower at compressible Quantum Hall states corresponding to even denominator fractions in the framework of the composite fermion approach. It is shown that the deviation from the linear low temperature behavior of the termopower is dominated by the logarithmic temperature corrections to the conductivity and not to the thermoelectric coefficient, although such terms are present in both quantities. The enhanced magnitude of this effect compared to the zero field case may allow its observation with the existing experimental techniques.Comment: Latex, 12 pages, Nordita repor

    Magnetotransport in a pseudomorphic GaAs/GaInAs/GaAlAs heterostructure with a Si delta-doping layer

    Full text link
    Magnetotransport properties of a pseudomorphic GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure are investigated in pulsed magnetic fields up to 50 T and at temperatures of T=1.4 K and 4.2 K. The structure studied consists of a Si delta-layer parallel to a Ga0.8In0.2As quantum well (QW). The dark electron density of the structure is n_e=1.67x 10^16 m^-2. By illumination the density can be increased up to a factor of 4; this way the second subband in the Ga0.8In0.2As QW can become populated as well as the Si delta-layer. The presence of electrons in the delta-layer results in drastic changes in the transport data, especially at magnetic fields beyond 30 T. The phenomena observed are interpreted as: 1) magnetic freeze-out of carriers in the delta-layer when a low density of electrons is present in the delta-layer, and 2) quantization of the electron motion in the two dimensional electron gases in both the Ga0.8In0.2As QW and the Si delta-layer in the case of high densities. These conclusions are corroborated by the numerical results of our theoretical model. We obtain a satisfactory agreement between model and experiment.Comment: 23 pages, RevTex, 11 Postscript figures (accepted for Phys. Rev. B

    A small polaron hopping model for multiphonon-assisted transport along DNA molecules, in the presence of disorder

    No full text
    We discuss a small polaron hopping model, in order to explain the intense temperature (T) dependence of the electrical conductivity ( σ ) observed at high temperatures along the DNA molecules. The model takes into account the one-dimensional character of the system as well as the presence of disorder in the DNA double helix. Theoretical considerations based on percolation lead to analytical expressions for the high temperature multiphonon-assisted small polaron hopping conductivity, the maximum hopping distance and their temperature dependence. For example, experimental data for the λ-phage DNA, the poly(dA)-poly(dT) DNA, and the native wet-spun calf thymus Li-DNA, follow nicely the theoretically predicted behavior, ln σh ∝ T- 2 / 3, over wide high-T ranges. In contrast to some previously presented theoretical suggestions, our model leads to realistic values for the maximum hopping distances, supporting the idea of multiphonon-assisted hopping of small polarons between next nearest neighbors of the DNA molecular "wire". We also examine the low temperature case. © 2006 Elsevier B.V. All rights reserved
    corecore