104 research outputs found

    Conformational effects in non-stoichiometric complexes of two hyperbranched molecules with a linear polyelectrolyte

    Get PDF
    We report results from Brownian dynamics computer simulations of systems comprised by two terminally charged hyperbranched molecules preferentially branched in the periphery, with an oppositely charged linear chain of varying length. Comparison of the findings from the present study to stoichiometric counterparts and to analogous dendrimer-based complexes, reveal that the presence of the second hyperbranched molecule incurs significant changes in the conformational characteristics of both components of the complex. Instead of step-like changes in the average size and shape of the hyperbranched component that were noted in the previously studied stoichiometric systems, a rather smooth change is observed upon increase of the length of the linear component. In addition, a markedly different behavior is also noticed in the conformational characteristics of the linear chain when compared to that in similar dendrimer-based systems. The above findings are consistent with the higher degree of deformability of the peripherally branched molecules which allow appropriate rearrangements in shape in order to accommodate the favorable Coulombic interactions between the two components of the complex. This behavior offers new insight towards the design of more efficient hyperbranched-based systems which can take advantage of the multifunctionality and the structural properties of the highly branched polymer components

    Non-Gaussian nature of glassy dynamics by cage to cage motion

    Get PDF
    A model based on a single Brownian particle moving in a periodic effective field is used to understand the non-Gaussian dynamics in glassy systems of cage escape and subsequent recaging, often thought to be caused by a heterogeneous glass structure. The results are compared to molecular-dynamics simulations of systems with varying complexity: quasi-two-dimensional colloidlike particles, atactic polystyrene, and a dendritic glass. The model nicely describes generic features of all three topologically different systems, in particular around the maximum of the non-Gaussian parameter. This maximum is a measure for the average distance between cages

    Structure of DNA-Functionalized Dendrimer Nanoparticles

    Full text link
    Atomistic molecular dynamics simulations have been carried out to reveal the characteristic features of ethylenediamine (EDA) cored protonated poly amido amine (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) that are functionalized with single stranded DNAs (ssDNAs). The four ssDNA strands that are attached via alkythiolate [-S (CH2)6-] linker molecule to the free amine groups on the surface of the PAMAM dendrimers observed to undergo a rapid conformational change during the 25 ns long simulation period. From the RMSD values of ssDNAs, we find relative stability in the case of purine rich ssDNA strands than pyrimidine rich ssDNA strands. The degree of wrapping of ssDNA strands on the dendrimer molecule was found to be influenced by the charge ratio of DNA and the dendrimer. As G4 dendrimer contains relatively more positive charge than G3 dendrimer, we observe extensive wrapping of ssDNAs on the G4 dendrimer. The ssDNA strands along with the linkers are seen to penetrate the surface of the dendrimer molecule and approach closer to the center of the dendrimer indicating the soft sphere nature of the dendrimer molecule. The effective radius of DNA-functionalized dendrimer nanoparticle was found to be independent of base composition of ssDNAs and was observed to be around 19.5 {\AA} and 22.4 {\AA} when we used G3 and G4 PAMAM dendrimer as the core of the nanoparticle respectively. The observed effective radius of DNA-functionalized dendrimer molecule apparently indicates the significant shrinkage in the structure that has taken place in dendrimer, linker and DNA strands. As a whole our results describe the characteristic features of DNA-functionalized dendrimer nanoparticle and can be used as strong inputs to design effectively the DNA-dendrimer nanoparticle self-assembly for their active biological applications.Comment: 13 pages, 10 figures, 3 Table

    Local polymer dynamics under strong connectivity constraints: The dendrimer case

    No full text
    The characteristics of local motion are explored by molecular dynamics simulations in a series of AB2-type dendrimer melts. Systems of generations 3–5 were simulated in a wide temperature range, allowing the assessment of effects associated with molecular size, proximity to the detected glasslike transitions, and the strong connectivity constraints imposed by the dendritic topology. Investigation of the mechanisms involved in local motion at short temporal and spatial scales revealed the connection between the non-Gaussian nature of monomer displacements to -relaxation and the caging/decaging process under different degrees of confinement. In the latter mechanism, two characteristic localization lengths were identified: at the low temperature limit spatial localization was realized within approximately 10% of the nearest neighbor distance while at temperatures higher than the glass transition, the existence of an analogous length scale is ascribed to the geometric constraints due to the dense connectivity pattern. As the results from this study are discussed in comparison to the behavior observed in linear polymers and supercooled liquids, new insight is provided on the universal/specific mechanisms involved in local dynamics of different glass-forming systems

    Self-Association and Complexation of the Anti-Cancer Drug Doxorubicin with PEGylated Hyperbranched Polyesters in an Aqueous Environment

    No full text
    Fully atomistic molecular dynamics simulations were employed in order to examine in detail the self-assembly characteristics and the complexation behavior of the anticancer drug doxorubicin with PEGylated hyperbranched polyesters in an aqueous environment. We have examined two variants of the polymeric compound by altering the length of the hydrophilic poly­(ethylene glycol) arms attached to the hydrophobic hyperbranched core. By comparing the clustering properties of the drug molecules in a polymer-free system to those in the polymer-containing models, we were able to assess the effects related to the presence and to the structural features of the polymer moiety. In addition, we have distinguished the effects associated with the neutral and protonated drug molecules separately. It was found that, in the presence of the polymeric material, the drug molecules formed clusters preferentially close to the polymer’s periphery, the characteristics of which depended on the structural details of the polymeric host and on the charge of the drug molecules. Hydrogen bonding was found to contribute to the polymer/drug complexation, with the nature of the prevailing donor/acceptor pairs depending on the charge of the drug. Dynamic analysis of the drugs’ motion revealed that in the polymer-containing systems the drug molecules experienced a larger degree of confinement within the formed clusters compared to that describing their polymer-free analogues, while the structural coherence of the clusters was found to be more persistent in the system with the larger poly­(ethylene glycol) arms. The results described in this work, through the monitoring of both static and dynamic aspects of the self-association and the complexation behavior of the neutral and charged molecules of doxorubicin with the polymeric host, may help toward the elucidation of the key parameters that are involved in the formation of effective polymer-based carriers for drug molecules of the anthracycline family used in cancer chemotherapy
    corecore