459 research outputs found

    The low-frequency response in the surface superconducting state of ZrB12_{12} single crystal}

    Full text link
    The large nonlinear response of a single crystal ZrB12_{12} to an ac field (frequency 40 - 2500 Hz) for H0>Hc2H_0>H_{c2} has been observed. Direct measurements of the ac wave form and the exact numerical solution of the Ginzburg-Landau equations, as well as phenomenological relaxation equation, permit the study of the surface superconducting states dynamics. It is shown, that the low frequency response is defined by transitions between the metastable superconducting states under the action of an ac field. The relaxation rate which determines such transitions dynamics, is found.Comment: 7 pages, 11 figure

    Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics

    Full text link
    The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.Comment: 19 pages, 3 color figure

    Nanobolometers for THz Photon Detection

    Full text link
    This article reviews the state of rapidly emerging terahertz hot-electron nanobolometers (nano-HEB), which are currently among of the most sensitive radiation power detectors at submillimeter wavelengths. With the achieved noise equivalent power close to 10^{-19} W/Hz^{1/2} and potentially capable of approaching NEP ~ 10^{-20} W/Hz^{1/2}, nano-HEBs are very important for future space astrophysics platforms with ultralow submillimeter radiation background. The ability of these sensors to detect single low-energy photons opens interesting possibilities for quantum calorimetry in the mid-infrared and even in the farinfrared parts of the electromagnetic spectrum. We discuss the competition in the field of ultrasensitive detectors, the physics and technology of nano-HEBs, recent experimental results, and perspectives for future development.Comment: 16 pages, 12 figures, 128 reference

    Energy resolution of terahertz single-photon-sensitive bolometric detectors

    Get PDF
    We report measurements of the energy resolution of ultra-sensitive superconducting bolometric detectors. The device is a superconducting titanium nanobridge with niobium contacts. A fast microwave pulse is used to simulate a single higher-frequency photon, where the absorbed energy of the pulse is equal to the photon energy. This technique allows precise calibration of the input coupling and avoids problems with unwanted background photons. Present devices have an intrinsic full-width at half-maximum energy resolution of approximately 23 terahertz, near the predicted value due to intrinsic thermal fluctuation noise.Comment: 11 pages (double-spaced), 5 figures; minor revision

    Tools for the development of learning objects in artistic education

    Full text link
    При финансовой поддержке Российского гуманитарного научного фонда, проект № 07-06-14162

    Boosted coupling of ATP hydrolysis to substrate transport upon cooperative estradiol-17-beta-D-glucuronide binding in a Drosophila ATP binding cassette type-C transporter

    Get PDF
    ATP binding cassette type-C (ABCC) transporters move molecules across cell membranes upon hydrolysis of ATP; however, their coupling of ATP hydrolysis to substrate transport remains elusive. Drosophila multidrug resistance-associated protein (DMRP) is the functional ortholog of human long ABCC transporters, with similar substrate and inhibitor specificity, but higher activity. Exploiting its high activity, we kinetically dissected the catalytic mechanism of DMRP by using E2-d-glucuronide (E2G), the physiologic substrate of human ABCC. We examined the DMRP-mediated interdependence of ATP and E2G in biochemical assays. We observed E2G-dependent ATPase activity to be biphasic at subsaturating ATP concentrations, which implies at least 2 E2G binding sites on DMRP. Furthermore, transport measurements indicated strong nonreciprocal cooperativity between ATP and E2G. In addition to confirming these findings, our kinetic modeling with the Complex Pathway Simulator indicated a 10-fold decrease in the E2G-mediated activation of ATP hydrolysis upon saturation of the second E2G binding site. Surprisingly, the binding of the second E2G allowed for substrate transport with a constant rate, which tightly coupled ATP hydrolysis to transport. In summary, we show that the second E2G binding-similar to human ABCC2-allosterically stimulates transport activity of DMRP. Our data suggest that this is achieved by a significant increase in the coupling of ATP hydrolysis to transport.-Karasik, A., Ledwitch, K. V., Aranyi, T., Varadi, A., Roberts, A., Szeri, F. Boosted coupling of ATP hydrolysis to substrate transport upon cooperative estradiol-17-beta-D-glucuronide binding in a Drosophila ATP binding cassette type-C transporter
    corecore