128 research outputs found
QoE Modelling, Measurement and Prediction: A Review
In mobile computing systems, users can access network services anywhere and
anytime using mobile devices such as tablets and smart phones. These devices
connect to the Internet via network or telecommunications operators. Users
usually have some expectations about the services provided to them by different
operators. Users' expectations along with additional factors such as cognitive
and behavioural states, cost, and network quality of service (QoS) may
determine their quality of experience (QoE). If users are not satisfied with
their QoE, they may switch to different providers or may stop using a
particular application or service. Thus, QoE measurement and prediction
techniques may benefit users in availing personalized services from service
providers. On the other hand, it can help service providers to achieve lower
user-operator switchover. This paper presents a review of the state-the-art
research in the area of QoE modelling, measurement and prediction. In
particular, we investigate and discuss the strengths and shortcomings of
existing techniques. Finally, we present future research directions for
developing novel QoE measurement and prediction technique
corrected soft photon theorem from a CFT Ward identity
Classical soft theorems applied to probe scattering processes on AdS
spacetimes predict the existence of corrections to the soft photon and
soft graviton factors of asymptotically flat spacetimes. In this paper, we
establish that the corrected soft photon theorem can be derived from a
large CFT Ward identity. We derive a perturbed soft photon mode
operator on a flat spacetime patch in global AdS in terms of an integrated
expression of the boundary CFT current. Using the same in the CFT Ward
identity, we recover the corrected soft photon theorem derived from
classical soft theorems.Comment: 32 pages, 1 figur
Diffusion Handles: Enabling 3D Edits for Diffusion Models by Lifting Activations to 3D
Diffusion Handles is a novel approach to enabling 3D object edits on
diffusion images. We accomplish these edits using existing pre-trained
diffusion models, and 2D image depth estimation, without any fine-tuning or 3D
object retrieval. The edited results remain plausible, photo-real, and preserve
object identity. Diffusion Handles address a critically missing facet of
generative image based creative design, and significantly advance the
state-of-the-art in generative image editing. Our key insight is to lift
diffusion activations for an object to 3D using a proxy depth, 3D-transform the
depth and associated activations, and project them back to image space. The
diffusion process applied to the manipulated activations with identity control,
produces plausible edited images showing complex 3D occlusion and lighting
effects. We evaluate Diffusion Handles: quantitatively, on a large synthetic
data benchmark; and qualitatively by a user study, showing our output to be
more plausible, and better than prior art at both, 3D editing and identity
control. Project Webpage: https://diffusionhandles.github.io/Comment: Project Webpage: https://diffusionhandles.github.io
Toward distributed, global, deep learning using IoT devices
Deep learning (DL) using large scale, high-quality IoT datasets can be computationally expensive. Utilizing such datasets to produce a problem-solving model within a reasonable time frame requires a scalable distributed training platform/system. We present a novel approach where to train one DL model on the hardware of thousands of mid-sized IoT devices across the world, rather than the use of GPU cluster available within a data center. We analyze the scalability and model convergence of the subsequently generated model, identify three bottlenecks that are: high computational operations, time consuming dataset loading I/O, and the slow exchange of model gradients. To highlight research challenges for globally distributed DL training and classification, we consider a case study from the video data processing domain. A need for a two-step deep compression method, which increases the training speed and scalability of DL training processing, is also outlined. Our initial experimental validation shows that the proposed method is able to improve the tolerance of the distributed training process to varying internet bandwidth, latency, and Quality of Service metrics
Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network
Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects
- …