3 research outputs found

    A CONTROLLED RELEASE MICROSPHERE FORMULATION OF AN ANTI-DIABETIC DRUG AND CHARACTERIZATION OF THE MICROSPHERE

    Get PDF
    Objective: Here the objective of this study was to prepare and characterize sustained release metformin loaded microsphere formulation which was prepared by W1/O/W2 emulsion solvent evaporation technique.Methods: Guar gum and sodium alginate were used as a matrix building material, whereas ethyl cellulose was applied as a coating polymer. Here various formulations were prepared by changing the drug and guar gum ratio, and the subsequent drug entrapment efficiency (DEE) and drug release were compared and evaluated.Results: Scanning Electron Microscopy (SEM) studies revealed spherical particles with a smooth appearance. Fourier-transform infrared spectroscopy (FTIR) showed there was no interaction between the ingredients in the final formulation. X-ray Diffraction (XRD) studies showed the emergence of polymorphic forms in the final formulation. The drug entrapment in the final drug loaded microsphere formulations was varied from 30-66.78%. The drug release studies showed the continuous release of the drug through twelve hours. The optimized formulation (f2) found to release 71.5% of drugs at the end of the 12th hour following zero order release kinetics.Conclusion: The increase in gum concentration in the W1 phase, which enhances viscosity in the W1 phase, resulting in an increase in the drug entrapment up to an optimum level and a decrease in the release rate. So, it can prolong the action. So by using this tool, we can say that metformin loaded microsphere formulation would be a suitable pharmaceutical formulation for the treatment of diabetic patients in modern drug therapy for its prolonged action. Â

    IN VIVO ANTITUMOR ACTIVITY OF PHYTOCHEMICAL PITC-2 OBTAINED FROM TISSUE CULTURED PLANT PLUCHEA INDICA ON SARCOMA-180 SOLID TUMOR MICE MODEL

    No full text
     Objective: PITC-2 was isolated from the methanolic root extract of tissue cultured medicinal plant Pluchea indica (L.) Less. PITC-2 is a thiophene derivative which is 2-(Prop-1-ynyl)-5(5,6-dihydroxyhexa-1,3-diynyl)-thiophene. The main objective of the study is to evaluate the in vivo antitumor activity of PITC 2 against sarcoma-180 cancer cell in Swiss albino mice.Methods: The antitumor activity was evaluated by treatment with PITC-2 at a dose of 2.5 and 5 mg/kg b.w for 21 days on sarcoma-180 mice model. Cell viability was studied using 3-(4, 5- dimethylthiazol -2-yl)-2, 5-diphenyl tetrazolium bromide assay and cell apoptosis, G1 cell cycle arrest and reduction in tumor cell proliferation were evaluated by histopathological analysis and Bcl-2, cyclic-D1, and Ki-67 protein expression through immunohistochemistry study.Results: Precisely, PITC-2 had a cytotoxic effect on various in vitro cancer cells. Significant decreases in solid tumor volume and weight along with increase lifespan also observed. The histopathological and immunohistopathological examination indicates that PITC-2 induces apoptosis, typical morphological changes and suppresses tumor cell proliferation along with G1 cell cycle arrest through the downregulation of the intratumoral expression of Bcl-2, cyclic D1, and Ki-67 and thus highlighting antiproliferative and apoptotic properties against sarcoma-180 in vivo solid tumor model.Conclusion: The present results clearly demonstrate that PITC-2 significantly inhibits sarcoma-180 cell growth in a dose-dependent manner in in vivo mice model. Besides this, the study reveals a comprehensive perception of the possible mechanism behind the antitumor activity of PITC-2 by significant changes in the morphological, hematological, biochemical parameters in sarcoma-180 cells
    corecore