18 research outputs found

    Fast messages: efficient, portable communication for workstation clusters and MPPs

    No full text

    A Core Library For Robust Numeric and Geometric Computation

    No full text
    Nonrobustness is a well-known problem in many areas of computational science. Until now, robustness techniques and the construction of robust algorithms have been the province of experts in this field of research. We describe a new C/C++ library (Core) for robust numeric and geometric computation based on the principles of Exact Geometric Computation (EGC). Through our library, for the first time, any programmer can write robust and efficient algorithms. The Core Library is based on a novel numerical core that is powerful enough to support EGC for algebraic problems. This is coupled with a simple delivery mechanism which transparently extends conventional C/C++ programs into robust codes. We are currently addressing efficiency issues in our library: (a) at the compiler and language level, (b) at the level of incorporating EGC techniques, as well as the (c) the system integration of both (a) and (b). Pilot experimental results are described. The basic library is available at http://cs.nyu.edu..

    A three-dimensional model for the dynamics and hydrodynamics of rowing boats

    No full text
    This paper proposes a new model describing the dynamics of a rowing boat for general three-dimensional motions. The complex interaction between the different components of the rowers-oars-boat system is analysed and reduced to a set of ordinary differential equations governing the rigid motion along the six degrees of freedom. To treat the unstable nature of the physical problem, a rather simple (but effective) control model is included, which mimics the main active control techniques adopted by the rowers during their action

    Attack-tolerant Unequal Probability Sampling Methods over Sliding Window for Distributed Streams

    No full text
    International audienceDistributed systems increasingly require the processing of large amounts of data, for metrology, safety or security purposes. The on-line processing of these large data streams requires the development of algorithms to efficiently calculate parameters. If elegant solutions have been proposed recently, their approximation is commonly calculated from the inception of the data stream. In a distributed execution context, it would be preferable to collect information only on the recent past (for resource saving or relevancy of most recent information). We therefore consider here the sliding window model. In this article, we propose a family of new sampling techniques that take into account both the sliding window model and the presence of a malicious adversary. Wayne Fuller proposed in 1970 a very ingenious method of sampling with unequal inclusion probabilities. After doing justice to this precursor paper and proposing a fast and simple implementation of it, we completely generalize Fuller's method in order to enable the use of a tuning parameter of spreading. The analytical results of these techniques show the excellent performance of the generalized pivotal approach. This generalization makes the sampling method less predictable and seems appropriate to be protected from malicious attacks when sampling from a stream
    corecore