13 research outputs found

    How Much Margin Is Left for Degrading Agricultural Soils? The Coming Soil Crises

    Get PDF
    Agricultural soils are in peril. Multiple lines of observational and empirical evidence suggest that we are losing the world’s fertile soils at an alarming rate, worsening the on-going global food crisis. It is increasingly clear that the risk of soil crises driven by erratic precipitation, warming air, and farming mismanagement is coming sooner rather than later. At this critical time, society cannot avoid looking for ways to curb soil crises. We argue that now is the right time for science-based mitigation strategies and new insights to protect soils. We offer four research priority areas that society needs to address. Arresting and reversing the ongoing soil degradation are tantamount to safeguarding humanity and the environment. To the extent that we continue to treat soil crises as a problem for farmers only—not as a global challenge—we only escalate the scale to which the problem will grow in time and complexity

    Sorption of Phosphorus from Swine, Dairy, and Poultry Manures

    Get PDF
    In most phosphorus (P) sorption studies, P is added as an inorganic salt to a predefined background solution such as calcium chloride (CaCl2) or potassium chloride (KCl); however, in many regions, the application of P to agricultural fields is in the form of animal manure. The purpose of this study, therefore, was to compare the sorption behavior of dissolved reactive P (DRP) in monopotassium phosphate (KH2PO4)–amended CaCl2 and KCl solutions with sorption behavior of DRP in three different animal manure extracts. Phosphorus single-point isotherms (PSI) were conducted on eight soils with the following solutions: KH2PO4-amended 0.01M CaCl2 solution, KH2PO4-amended 0.03M KCl solution, water-extracted dairy manure, water-extracted poultry litter, and swine lagoon effluent. The PSI values for the dairy manure extract were significantly lower than the CaCl2 solution for all eight soils and lower than the KCl solution for six soils. The PSI values were significantly higher, on the other hand, for poultry litter extract and swine effluent than the inorganic solutions in four and five of the soils, respectively. Our observations that the sorption of DRP in manure solutions differs significantly from that of KH2PO4-amended CaCl2 and KCl solutions indicates that manure application rates based on sorption data collected from inorganic P salt experiments may be inaccurate

    Sorption of Phosphorus from Swine, Dairy, and Poultry Manures

    Full text link

    Poultry Litter, Biochar, and Fertilizer Effect on Corn Yield, Nutrient Uptake, N<sub>2</sub>O and CO<sub>2</sub> Emissions

    No full text
    Biochar holds promise as a soil amendment with potential to sequester carbon, improve soil fertility, adsorb organic pollutants, stimulate soil microbial activities, and improve crop yield. We used a hardwood biochar to assess its impact on corn (Zea mays) grain, biomass yields and greenhouse gas emission in central Kentucky, USA. Six treatments included as follows: control (C) with no amendment applied; poultry litter (PL); biochar (B); biochar + poultry litter (B + PL); fertilizers N-P-K (F); and biochar + fertilizers (B + F). Biochar was applied only once to plots in 2010 followed by rototilling all plots. Only PL and fertilizer were applied annually. When applied alone, biochar did not significantly increase dry matter, grain yield, and N-P-K uptake. There was also no significant difference between the combined treatments when compared with PL or F applications alone. We observed a slight increasing trend in corn grain yield in the following 2 years compared to the first year from biochar treatment. Poultry litter treatment produced significantly greater N2O and CO2 emissions, but emissions were lower from the B+PL treatment. We conclude that this biochar did not improve corn productivity in the short term but has potential to increase yield in the long term and may have some benefit when combined with PL or F in reducing N2O and CO2 emissions

    Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound

    No full text
    Biogas is produced by a consortium of bacteria and archaea. We studied how the microbiome of poultry litter digestate was affected by time and treatments that enhanced biogas production. The microbiome was analyzed at six, 23, and 42 weeks of incubation. Starting at week seven, the digesters underwent four treatments: control, microaeration with 6 mL air L−1 digestate per day, treatment with a 1000 Hz sine wave, or treatment with the sound wave and microaeration. Both microaeration and sound enhanced biogas production relative to the control, while their combination was not as effective as microaeration alone. At week six, over 80% of the microbiome of the four digesters was composed of the three phyla Actinobacteria, Proteobacteria, and Firmicutes, with less than 10% Euryarchaeota and Bacteroidetes. At week 23, the digester microbiomes were more diverse with the phyla Spirochaetes, Synergistetes, and Verrucomicrobia increasing in proportion and the abundance of Actinobacteria decreasing. At week 42, Firmicutes, Bacteroidetes, Euryarchaeota, and Actinobacteria were the most dominant phyla, comprising 27.8%, 21.4%, 17.6%, and 12.3% of the microbiome. Other than the relative proportions of Firmicutes being increased and proportions of Bacteroidetes being decreased by the treatments, no systematic shifts in the microbiomes were observed due to treatment. Rather, microbial diversity was enhanced relative to the control. Given that both air and sound treatment increased biogas production, it is likely that they improved poultry litter breakdown to promote microbial growth

    Effects of Cropping Systems on Soil Physicochemical Properties and Abundances and Spatial Distributions of Nitrogen-Cycling Bacteria

    No full text
    Soil nitrogen (N) is a common limiting factor where soil N-cycling is a key component of agroecosystems. Soil N transformation processes are largely mediated by microbes, and understanding bacteria involvement in soil N-cycling in agricultural systems has both agronomic and environmental importance. This 2 yr field-scale study examined the abundances and spatial distributions of the total bacterial community (16S rRNA), bacteria involved in nitrification (amoA) and denitrification (narG, nirK, and nosZ), and soil physicochemical properties of winter wheat (Triticum aestivum L.)–soybean (Glycine max L.) double-crop with 2–3 weeks of spring grazing (WGS) and without grazing (WS) and tall fescue (Festuca arundinacea (L.) Schreb.) pasture (TF) managed to near-natural conditions with similar grazing. The TF soil had a significantly higher abundance of 16S rRNA, amoA, narG, nirK, and nosZ genes than the WS and WGS soils, which had similar levels between themselves. Soil organic matter (OM) and soil pH had stronger effects on the N-cycling bacteria gene abundance. All bacterial gene concentrations and soil pH showed nonrandom distribution patterns with a 141–186 m range autocorrelation. These results indicate that biological N transformation processes are more important in natural agricultural systems and the abundance of N-cycling bacteria can be manipulated by field-scale management strategies

    Improving Anaerobic Digestion of Brewery and Distillery Spent Grains through Aeration across a Silicone Membrane

    No full text
    An increase in the number of independent breweries and distilleries has led to an increase in the amount of spent grains with inadequate means of disposal. One option for disposal is as feedstock for anaerobic digestion if digester stability is ensured. In this study, brewers’ spent grain and distillers’ spent grain were used as substrate for anaerobic digestion for 32 weeks. The digestate was treated by recirculation through a silicone hose located in an external tank filled with saline solution. The hose served as a permeable membrane allowing for the passage of gases. The recirculation tanks were fitted with check valves to maintain three pressure/gas regimes: 26 mm Hg N2, 26 mm Hg aeration or 100 mm Hg aeration. A fourth digester was operated with no recirculation as the control. These treatments were chosen to determine if differences in digester stability, wastewater treatment efficiency, and biogas production could be detected. A combination of dairy and swine manure was used as seeding to provide a methanogenic consortium and bicarbonate buffering. However, despite trying to provide for adequate initial bicarbonate buffering, all four digesters had low initial buffering and consequently low pH as short-chain fatty acids accumulated. After six weeks, bicarbonate buffering and pH increased as methane production increased, and short-chain fatty acids decreased. Later, despite the fluxes of O2 and N2 across the silicone membrane being very low, differences between the various treatments were noted. The pH of the digestate treated by N2 recirculation was lower than the other digesters and decreased further after distillers’ spent grain was substituted for brewers’ spent grain. Aeration at a pressure of 26 mm Hg and 100 mg Hg increased biogas production compared to other treatments but only significantly so at 100 mm Hg. These results suggest that partial purging of dissolved gases in anaerobic digestate by the small fluxes of N2 or O2 across a permeable membrane may affect digester performance

    Persistence of antibiotic resistance genes in beef cattle backgrounding environment over two years after cessation of operation.

    No full text
    Confined animal feeding operations can facilitate the spread of genes associated with antibiotic resistance. It is not known how cattle removal from beef cattle backgrounding operation affects the persistence of antibiotic resistance genes (ARGs) in the environment. We investigated the effect of cessation of beef cattle backgrounding operation on the persistence and distribution of ARGs in the beef cattle backgrounding environment. The study was conducted at a pasture-feedlot type beef cattle backgrounding operation which consisted of feeding and grazing areas that were separated by a fence with an access gate. Backgrounding occurred for seven years before cattle were removed from the facility. Soil samples (n = 78) from 26 georeferenced locations were collected at the baseline before cattle were removed, and then one year and two years after cattle were removed. Metagenomic DNA was extracted from the soil samples and total bacterial population (16S rRNA), total Enterococcus species and class 1 integrons (intI1), and erythromycin (ermB and ermF), sulfonamide (sul1 and sul2) and tetracycline (tetO, tetW and tetQ) resistance genes were quantified. Concentrations of total bacteria, Enterococcus spp., class 1 integrons, and ARGs were higher in the feeding area and its immediate vicinity (around the fence and the gate) followed by a gradient decline along the grazing area. Although the concentrations of total bacteria, Enterococcus spp., class 1 integrons and ARGs in the feeding area significantly decreased two years after cattle removal, their concentrations were still higher than that observed in the grazing area. Higher concentrations over two years in the feeding area when compared to the grazing area suggest a lasting effect of confined beef cattle production system on the persistence of bacteria and ARGs in the soil
    corecore