37 research outputs found

    Skeletal muscle myostatin mRNA expression is upregulated in aged human adults with excess adiposity, but is not associated with insulin resistance and ageing

    Get PDF
    Myostatin negatively regulates skeletal muscle growth and appears upregulated in human obesity and associated with insulin resistance. However, observations are confounded by ageing, and the mechanisms responsible are unknown. The aim of this study was to delineate between the effects of excess adiposity, insulin resistance and ageing on myostatin mRNA expression in human skeletal muscle and to investigate causative factors using in vitro models. An in vivo cross-sectional analysis of human skeletal muscle was undertaken to isolate effects of excess adiposity and ageing per se on myostatin expression. In vitro studies employed human primary myotubes to investigate the potential involvement of cross-talk between subcutaneous adipose tissue (SAT) and skeletal muscle, and lipid-induced insulin resistance. Skeletal muscle myostatin mRNA expression was greater in aged adults with excess adiposity than age-matched adults with normal adiposity (2.0-fold higher; P < 0.05) and occurred concurrently with altered expression of genes involved in the maintenance of muscle mass but did not differ between younger and aged adults with normal adiposity. Neither chronic exposure to obese SAT secretome nor acute elevation of fatty acid availability (which induced insulin resistance) replicated the obesity-mediated upregulation of myostatin mRNA expression in vitro. In conclusion, skeletal muscle myostatin mRNA expression is uniquely upregulated in aged adults with excess adiposity and insulin resistance but not by ageing alone. This does not appear to be mediated by the SAT secretome or by lipid-induced insulin resistance. Thus, factors intrinsic to skeletal muscle may be responsible for the obesity-mediated upregulation of myostatin, and future work to establish causality is required

    Unacylated ghrelin, leptin, and appetite display diurnal rhythmicity in lean adults

    Get PDF
    Constant routine and forced desynchrony protocols typically remove the effects of behavioral/environmental cues to examine endogenous circadian rhythms, yet this may not reflect rhythms of appetite regulation in the real world. It is therefore important to understand these rhythms within the same subjects under controlled diurnal conditions of light, sleep, and feeding. Ten healthy adults (9 M/1 F, means ±SD: age, 30 ± 10 yr; body mass index, 24.1 ± 2.7 kg·m-2) rested supine in the laboratory for 37 h. All data were collected during the final 24 h of this period (i.e., 0800-0800 h). Participants were fed hourly isocaloric liquid meal replacements alongside appetite assessments during waking before a sleep opportunity from 2200 to 0700 h. Hourly blood samples were collected throughout the 24-h period. Dim light melatonin onset occurred at 2318 ± 46 min. A diurnal rhythm in mean plasma unacylated ghrelin concentration was identified (P = 0.04), with the acrophase occurring shortly after waking (0819), falling to a nadir in the evening with a relative amplitude of 9%. Plasma leptin concentration also exhibited a diurnal rhythm (P < 0.01), with the acrophase occurring shortly after lights-out (0032 h) and the lowest concentrations at midday. The amplitude for this rhythm was 25%. Diurnal rhythms were established in all dimensions of appetite except for sweet preference (P = 0.29), with both hunger (2103 h) and prospective food consumption (1955 h) reaching their peak in the evening before falling to their nadir shortly after waking. Under controlled diurnal conditions, simultaneous measurement of leptin, unacylated ghrelin, and subjective appetite over a 24-h period revealed rhythmicity in appetite regulation in lean, healthy humans.NEW & NOTEWORTHY Simultaneous assessment of subjective appetite, unacylated ghrelin, and leptin was carried out over a continuous 37-h protocol for the first time under conditions of controlled light, sleep, and feeding in healthy, lean adults. Rhythms were observed in unacylated ghrelin, leptin, and components of subjective appetite, such as hunger, prospective consumption, and fullness. Concurrent measurement of rhythms in these variables is important to fully understand the temporal relationships between components of appetite as well as the influence of diurnal factors such as sleep, light, and feeding

    A meta-analysis comparing the effectiveness of alternate day fasting, the 5:2 diet, and time-restricted eating for weight loss.

    Get PDF
    OBJECTIVE The objective of this meta-analysis was to compare the effectiveness of different intermittent fasting (IF) regimens on weight loss, in the general population, and compare these to traditional caloric energy restriction (CER). METHODS Three databases were searched from 2011 to June 2021 for randomized controlled trials (RCTs) that assessed weight loss and IF, including alternate day fasting (ADF), the 5:2 diet, and time-restricted eating (TRE). A random effect network analysis was used to compare the effectiveness between the three regimens. Meta-regression analysis was presented as weighted mean differences of body weight loss. RESULTS The exploratory random effects network analysis of 24 RCTs (n = 1768) ranked ADF as the most effective, followed by CER and TRE. The meta-analysis showed that IF regimens resulted in similar weight loss to CER (mean difference 0.26 kg, 95% CI: -0.31 to 0.84; p = 0.37). Compliance was generally high (>80%) in trials shorter than 3 months. CONCLUSIONS The present meta-analysis concludes that IF is comparable to CER and a promising alternative for weight loss. Among the three regimens, ADF showed the highest effectiveness for weight loss, followed by CER and TRE. Further well-powered RCTs with longer durations of intervention are required to draw solid conclusions

    A Randomized Controlled Clinical Trial in Healthy Older Adults to Determine Efficacy of Glycine and N-Acetylcysteine Supplementation on Glutathione Redox Status and Oxidative Damage.

    Get PDF
    Glycine and cysteine are non-essential amino acids that are required to generate glutathione, an intracellular tripeptide that neutralizes reactive oxygen species and prevents tissue damage. During aging glutathione demand is thought to increase, but whether additional dietary intake of glycine and cysteine contributes towards the generation of glutathione in healthy older adults is not well understood. We investigated supplementation with glycine and n-acetylcysteine (GlyNAC) at three different daily doses for 2 weeks (low dose: 2.4 g, medium dose: 4.8 g, or high dose: 7.2 g/day, 1:1 ratio) in a randomized, controlled clinical trial in 114 healthy volunteers. Despite representing a cohort of healthy older adults (age mean = 65 years), we found significantly higher baseline levels of markers of oxidative stress, including that of malondialdehyde (MDA, 0.158 vs. 0.136 µmol/L, p < 0.0001), total cysteine (Cysteine-T, 314.8 vs. 276 µM, p < 0.0001), oxidized glutathione (GSSG, 174.5 vs. 132.3 µmol/L, p < 0.0001), and a lower ratio of reduced to oxidized glutathione (GSH-F:GSSG) (11.78 vs. 15.26, p = 0.0018) compared to a young reference group (age mean = 31.7 years, n = 20). GlyNAC supplementation was safe and well tolerated by the subjects, but did not increase levels of GSH-F:GSSG (end of study, placebo = 12.49 vs. 7.2 g = 12.65, p-value = 0.739) or that of total glutathione (GSH-T) (end of study, placebo = 903.5 vs. 7.2 g = 959.6 mg/L, p-value = 0.278), the primary endpoint of the study. Post-hoc analyses revealed that a subset of subjects characterized by high oxidative stress (above the median for MDA) and low baseline GSH-T status (below the median), who received the medium and high doses of GlyNAC, presented increased glutathione generation (end of study, placebo = 819.7 vs. 4.8g/7.2 g = 905.4 mg/L, p-value = 0.016). In summary GlyNAC supplementation is safe, well tolerated, and may increase glutathione levels in older adults with high glutathione demand. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT05041179, NCT05041179

    Disparate habitual physical activity and dietary intake profiles of elderly men with low and elevated systemic inflammation

    Get PDF
    The development of chronic, low-grade systemic inflammation in the elderly (inflammaging) has been associated with increased incidence of chronic diseases, geriatric syndromes, and functional impairments. The aim of this study was to examine differences in habitual physical activity (PA), dietary intake patterns, and musculoskeletal performance among community-dwelling elderly men with low and elevated systemic inflammation. Nonsarcopenic older men free of chronic diseases were grouped as ‘low’ (LSI: n = 17; 68.2 ± 2.6 years; hs-CRP: 1 mg/L) systemic inflammation according to their serum levels of high-sensitivity CRP (hs-CRP). All participants were assessed for body composition via Dual Emission X-ray Absorptiometry (DEXA), physical performance using the Short Physical Performance Battery (SPPB) and handgrip strength, daily PA using accelerometry, and daily macro- and micronutrient intake. ESI was characterized by a 2-fold greater hs-CRP value than LSI (p < 0.01). The two groups were comparable in terms of body composition, but LSI displayed higher physical performance (p < 0.05), daily PA (step count/day and time at moderate-to-vigorous PA (MVPA) were greater by 30% and 42%, respectively, p < 0.05), and daily intake of the antioxidant vitamins A (6590.7 vs. 4701.8 IU/day, p < 0.05), C (120.0 vs. 77.3 mg/day, p < 0.05), and E (10.0 vs. 7.5 mg/day, p < 0.05) compared to ESI. Moreover, daily intake of vitamin A was inversely correlated with levels of hs-CRP (r = −0.39, p = 0.035). These results provide evidence that elderly men characterized by low levels of systemic inflammation are more physically active, spend more time in MVPA, and receive higher amounts of antioxidant vitamins compared to those with increased systemic inflammation

    Chronotype: Implications for Epidemiologic Studies on Chrono-Nutrition and Cardiometabolic Health.

    Get PDF
    Chrono-nutrition is an emerging research field in nutritional epidemiology that encompasses 3 dimensions of eating behavior: timing, frequency, and regularity. To date, few studies have investigated how an individual's circadian typology, i.e., one's chronotype, affects the association between chrono-nutrition and cardiometabolic health. This review sets the directions for future research by providing a narrative overview of recent epidemiologic research on chronotype, its determinants, and its association with dietary intake and cardiometabolic health. Limited research was found on the association between chronotype and dietary intake in infants, children, and older adults. Moreover, most of the evidence in adolescents and adults was restricted to cross-sectional surveys with few longitudinal cohorts simultaneously collecting data on chronotype and dietary intake. There was a gap in the research concerning the association between chronotype and the 3 dimensions of chrono-nutrition. Whether chronotype modifies the association between diet and cardiometabolic health outcomes remains to be elucidated. In conclusion, further research is required to understand the interplay between chronotype, chrono-nutrition, and cardiometabolic health outcomes

    Systemic and metabolic signature of sarcopenia in community-dwelling older adults

    Get PDF
    Background Evidence suggests the pivotal contribution of nutrition as a modifiable risk factor for sarcopenia. The present cross-sectional study characterized the nutritional and metabolic profile of sarcopenia through an extensive exploration of a wide array of blood biomarkers related to muscle protein metabolism and transcriptomic signatures in community-dwelling elderly adults. Methods Among 189 older individuals with a mean age of 73.2 years, sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia criteria based on appendicular lean mass measured by dual-energy X-ray absorptiometry scan, muscle strength, and gait speed. Nutritional status was evaluated using the mini-nutritional assessment (MNA). In addition, we assessed specific blood biomarkers of nutritional status (plasma essential amino acids [EAAs], vitamins), nicotine-derived metabolites, and an extensive microarray analysis from peripheral blood mononuclear cells. Results Malnutrition defined by low MNA score was independently associated with sarcopenia (p < .001). Sarcopenic elderly showed lower body mass index and leptin and higher adiponectin and high-density lipoproteins. Levels of EAAs including lysine, methionine, phenylalanine, threonine, as well as branched-chain AAs and choline, were inversely associated with sarcopenia. Furthermore, nicotine metabolites (cotinine and trans-3′-hydroxycotine) and vitamin B6 status were linked to one or more clinical and functional measures of sarcopenia. Differentially expressed genes and ingenuity pathway analysis supported the association of nutrition with sarcopenia. Conclusions Herein, the characterization of a nutritional and metabolic signature of sarcopenia provides a firm basis and potential identification of specific targets and directions for the nutritional approach to the prevention and treatment of sarcopenia in aging populations

    The 5' adenosine monophosphate-activated protein kinase: Regulating the ebb and flow of cellular energetics

    No full text
    The 5′ adenosine monophosphate-activated protein kinase (AMPK) is a heterotrimeric, evolutionary conserved enzyme which has emerged as a critical regulator of skeletal muscle cellular bioenergetics. AMPK is activated by both chemical (adipokines) and mechanical (stretch, contraction) stimuli leading to metabolic changes within muscle cells that include increased fatty acid oxidation, glucose uptake and glycolysis, as well as the stimulation and regulation of mitochondrial biogenesis. Collectively these acute responses and chronic adaptations act to reduce cellular disturbances, resulting in tighter metabolic control and maintenance of energy homeostasis. This brief review will describe the structure, function and activation of AMPK in skeletal muscle and how this ubiquitous molecule may be a plausible target for the treatment of several lifestyle-related metabolic disorders

    Protein and Energy Intakes Are Skewed toward the Evening among Children and Adolescents in the United States: NHANES 2013–2014

    No full text
    Background: Emerging evidence suggests that the timing, amount at individual eating occasions, and distribution of protein and energy intakes throughout the day may affect health. Objective: We examined the timing, amounts, and distribution of protein and energy intakes throughout the day among participants aged 4–18 y in the United States in the context of chronobiology and nutrition. Methods: This cross-sectional analysis included 2532 participants aged 4–18 y who completed the first interviewer-administered 24-h dietary recall in NHANES 2013–2014. Descriptive statistics for intakes across the day were provided as percentiles, means ± SEMs, and percentages of nonconsumers. Statistical differences between intakes across the day were tested with the use of individual-level fixed-effects regression models. Cumulative distribution functions were used to examine the timing of the first and last caloric eating occasion. Results: Mean ± SEM protein (grams) and energy (percentage of the day) intakes were significantly higher (P < 0.05) in the evening than in the morning among all age groups. The percentage of participants aged 4–8, 9–13, and 14–18 y who had their first eating occasion at or after 1100 was 4%, 14%, and 20%, respectively, and the percentage who had their last eating occasion at or after 2100 was 8%, 19%, and 34%, respectively. Conclusions: Protein and energy intakes among participants aged 4–18 y in this study were largest in the evening and midday and smallest in the morning and afternoon. Clinical trials are needed to assess any potential impact such dietary behaviors may have on health outcomes related to metabolic dysfunction in children and adolescents
    corecore