40 research outputs found

    The SET Domain Protein, Set3p, Promotes the Reliable Execution of Cytokinesis in Schizosaccharomyces pombe

    Get PDF
    In response to perturbation of the cell division machinery fission yeast cells activate regulatory networks that ensure the faithful completion of cytokinesis. For instance, when cells are treated with drugs that impede constriction of the actomyosin ring (low doses of Latrunculin A, for example) these networks ensure that cytokinesis is complete before progression into the subsequent mitosis. Here, we identify three previously uncharacterized genes, hif2, set3, and snt1, whose deletion results in hyper-sensitivity to LatA treatment and in increased rates of cytokinesis failure. Interestingly, these genes are orthologous to TBL1X, MLL5, and NCOR2, human genes that encode components of a histone deacetylase complex with a known role in cytokinesis. Through co-immunoprecipitation experiments, localization studies, and phenotypic analysis of gene deletion mutants, we provide evidence for an orthologous complex in fission yeast. Furthermore, in light of the putative role of the complex in chromatin modification, together with our results demonstrating an increase in Set3p levels upon Latrunculin A treatment, global gene expression profiles were generated. While this analysis demonstrated that the expression of cytokinesis genes was not significantly affected in set3Ξ” backgrounds, it did reveal defects in the ability of the mutant to regulate genes with roles in the cellular response to stress. Taken together, these findings support the existence of a conserved, multi-protein complex with a role in promoting the successful completion of cytokinesis

    Effects of global O-GlcNAcylation on galectin gene-expression profiles in human cancer cell lines

    Get PDF
    Background/Aim: The effects of O-linked Ξ²-N-acetyl-D-glucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase (OGA) inhibitors on galectin gene expression profiles were examined in MCF7, HT-29, and HL-60 cancer cell lines. Materials and Methods: Cell cultures were treated for 24 h with OGA inhibitor thiamet G or OGT inhibitor 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-5-thio-Ξ±-D-glucopyranose, and global O-GlcNAc levels and expression of galectin genes were determined using an immunodot blot assay and real-time quantitative polymerase chain reaction. Results: Two galectin genes, LGALS3 in MCF7 cells and LGALS12 in HL-60 cells, were up-regulated by O-GlcNAc, whereas other cell-specific galectins were unresponsive to changes in O-GlcNAc level. Of interest, basal levels of O-GlcNAc in resting HL-60 and HT-29 cells were significantly higher than those in cells differentiated into neutrophilic or enterocytic lineages, respectively. Conclusion: O-GlcNAc-mediated signaling pathways may be involved in regulating the expression of only a limited number of galectin genes. Additional O-GlcNAc-dependent mechanisms may work at the protein level (galectin secretion and intracellular localization) and warrant further investigation

    A Cyclin-Dependent Kinase that Promotes Cytokinesis through Modulating Phosphorylation of the Carboxy Terminal Domain of the RNA Pol II Rpb1p Sub-Unit

    Get PDF
    In Schizosaccharomyces pombe, the nuclear-localized kinase, Lsk1p, promotes cytokinesis by positively regulating the Septation Initiation Network (SIN). Although a member of the cyclin-dependent kinase (CDK) family, neither a cyclin partner nor a physiological target has been identified. In this report we identify a cyclin, Lsc1p, that physically interacts and co-localizes with Lsk1p. Furthermore, lsk1Ξ”, lsc1Ξ”, as well as kinase-dead lsk1-K306R mutants, display highly similar cytokinesis defects. Lsk1p is related to CDKs that phosphorylate the carboxy-terminal domain (CTD) of the largest sub-unit of RNA polymerase II (Rpb1p). Interestingly, we find that Lsk1p and Lsc1p are required for phosphorylation of Ser-2 residues found in the heptad repeats of the CTD. To determine if Rpb1p could be a physiological target, we replaced the native rpb1 gene with a synthetic gene encoding a Rpb1p protein in which Ser-2 was substituted with the non-phosphorylatable amino-acid alanine in all heptads. Cells carrying this allele were similar to lsk1Ξ” mutants: They were viable, displayed genetic interactions with the SIN, and were unable to complete cytokinesis upon perturbation of the cell division machinery. We conclude that Ser-2 phosphorylation of the CTD heptads plays a novel physiological role in the regulation of cytokinesis

    A Genetic Screen for Fission Yeast Gene Deletion Mutants Exhibiting Hypersensitivity to Latrunculin A

    No full text
    Fission yeast cells treated with low doses of the actin depolymerizing drug, latrunculin A (LatA), delay entry into mitosis via a mechanism that is dependent on both the Clp1p and Rad24p proteins. During this delay, cells remain in a cytokinesis-competent state that is characterized by continuous repair and/or reestablishment of the actomyosin ring. In this manner, cells ensure the faithful completion of the preceding cytokinesis in response to perturbation of the cell division machinery. To uncover other genes with a role in this response, or simply genes with roles in adapting to LatA-induced stress, we carried out a genome-wide screen and identified a group of 38 gene deletion mutants that are hyper-sensitive to the drug. As expected, we found genes affecting cytokinesis and/or the actin cytoskeleton within this set (ain1, acp2, imp2). We also identified genes with roles in histone modification (tra1, ngg1), intracellular transport (apl5, aps3), and glucose-mediated signaling (git3, git5, git11, pka1, cgs2). Importantly, while the identified gene deletion mutants are prone to cytokinesis failure in the presence of LatA, they are nevertheless fully capable of cell division in the absence of the drug. These results indicate that fission yeast cells make use of a diverse set of regulatory modules to counter abnormal cytoskeletal perturbations, and furthermore, that these modules act redundantly to ensure cell survival and proliferation

    Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain.

    Get PDF
    In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD). Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Ξ” mutants--just like lsk1Ξ” and lsc1Ξ” strains--are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis--including the actin interacting protein gene, aip1--as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Ξ” aip1Ξ” double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis

    Using genetic buffering relationships identified in fission yeast to reveal susceptibilities in cells lacking hamartin or tuberin function

    No full text
    Tuberous sclerosis complex is an autosomal dominant disorder characterized by benign tumors arising from the abnormal activation of mTOR signaling in cells lacking TSC1 (hamartin) or TSC2 (tuberin) activity. To expand the genetic framework surrounding this group of growth regulators, we utilized the model eukaryote Schizosaccharomyces pombe to uncover and characterize genes that buffer the phenotypic effects of mutations in the orthologous tsc1 or tsc2 loci. Our study identified two genes: fft3 (encoding a DNA helicase) and ypa1 (encoding a peptidyle-prolyl cis/trans isomerase). While the deletion of fft3 or ypa1 has little effect in wild-type fission yeast cells, their loss in tsc1Ξ” or tsc2Ξ” backgrounds results in severe growth inhibition. These data suggest that the inhibition of Ypa1p or Fft3p might represent an β€˜Achilles’ heel’ of cells defective in hamartin/tuberin function. Furthermore, we demonstrate that the interaction between tsc1/tsc2 and ypa1 can be rescued through treatment with the mTOR inhibitor, torin-1, and that ypa1Ξ” cells are resistant to the glycolytic inhibitor, 2-deoxyglucose. This identifies ypa1 as a novel upstream regulator of mTOR and suggests that the effects of ypa1 loss, together with mTOR activation, combine to result in a cellular maladaptation in energy metabolism that is profoundly inhibitory to growth

    The Pseudokinase Domain of Saccharomyces cerevisiae Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes

    No full text
    Tra1 is an essential component of the SAGA/SLIK and NuA4 complexes in S. cerevisiae, recruiting these co-activator complexes to specific promoters. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase (PI3K) domain. Unlike other PIKK family members (e.g., Tor1, Tor2, Mec1, Tel1), Tra1 has no demonstrable kinase activity. We identified three conserved arginine residues in Tra1 that reside proximal or within the cleft between the N- and C-terminal subdomains of the PI3K domain. To establish a function for Tra1’s PI3K domain and specifically the cleft region, we characterized a tra1 allele where these three arginine residues are mutated to glutamine. The half-life of the Tra1Q3 protein is reduced but its steady state level is maintained at near wild-type levels by a transcriptional feedback mechanism. The tra1Q3 allele results in slow growth under stress and alters the expression of genes also regulated by other components of the SAGA complex. Tra1Q3 is less efficiently transported to the nucleus than the wild-type protein. Likely related to this, Tra1Q3 associates poorly with SAGA/SLIK and NuA4. The ratio of Spt7SLIK to Spt7SAGA increases in the tra1Q3 strain and truncated forms of Spt20 become apparent upon isolation of SAGA/SLIK. Intragenic suppressor mutations of tra1Q3 map to the cleft region further emphasizing its importance. We propose that the PI3K domain of Tra1 is directly or indirectly important for incorporating Tra1 into SAGA and NuA4 and thus the biosynthesis and/or stability of the intact complexes
    corecore