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Abstract. Background/Aim: The effects of O-linked β-N-
acetyl-D-glucosamine (O-GlcNAc) transferase (OGT) and O-
GlcNAcase (OGA) inhibitors on galectin gene expression
profiles were examined in MCF7, HT-29, and HL-60 cancer
cell lines. Materials and Methods: Cell cultures were treated
for 24 h with OGA inhibitor thiamet G or OGT inhibitor 
2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-5-thio-α-D-
glucopyranose, and global O-GlcNAc levels and expression of
galectin genes were determined using an immunodot blot
assay and real-time quantitative polymerase chain reaction.
Results: Two galectin genes, LGALS3 in MCF7 cells and
LGALS12 in HL-60 cells, were up-regulated by O-GlcNAc,
whereas other cell-specific galectins were unresponsive to
changes in O-GlcNAc level. Of interest, basal levels of 
O-GlcNAc in resting HL-60 and HT-29 cells were significantly
higher than those in cells differentiated into neutrophilic or
enterocytic lineages, respectively. Conclusion: O-GlcNAc-
mediated signaling pathways may be involved in regulating
the expression of only a limited number of galectin genes.
Additional O-GlcNAc-dependent mechanisms may work at the
protein level (galectin secretion and intracellular localization)
and warrant further investigation. 

Galectins are multifunctional, soluble β-galactoside-binding
proteins that have emerged as cancer biomarkers and as
targets for anti-cancer therapy (1). Galectins contribute to
regulating the processes of cell growth and death, and also
play a role in assisting tumor cells in avoiding immune
surveillance (2, 3). Galectin expression profiling has revealed
that the transcript abundance of specific galectin genes varies
significantly between normal and cancerous cells and tissues

(1, 4-6). Despite their relevance to cancer biology, the
development of practical biomedical applications has been
hampered by the complexity of regulation of the 12 human
galectin genes (LGALS; lectin, galactoside-binding, soluble)
(7, 8) and diverse glycan-dependent and glycan-independent
functions of galectins outside and inside cells (9-11).

There is evidence (12-14) suggesting that the expression
of certain galectins is associated with specific glycosylation
of intracellular regulatory proteins by addition of the single
sugar O-linked β-N-acetyl-D-glucosamine (O-GlcNAc), in a
process called O-GlcNAcylation (15, 16). This post-
translational protein modification is directly controlled by
the coordinated action of only two enzymes O-GlcNAc
transferase (OGT) and O-GlcNAcase (OGA), which add and
remove O-GlcNAc residues, respectively. Enhanced
O-GlcNAcylation of intracellular proteins is a common
feature of cells treated with a variety of stress stimuli (17).
Furthermore, the levels of O-GlcNAc are elevated in tumor
tissues, while reduced O-GlcNAcylation has been reported
to inhibit oncogenesis (18). Although O-GlcNAcylation is
known to change the functional activities of many regulatory
molecules, including transcription factors, and govern
protein localization within cells (15, 16), these mechanisms
have never been evaluated for galectins at either the protein
and transcript levels as far as we are aware of.

In this study, we investigated the effects of OGT and OGA
inhibitors on the expression of galectin genes in three human
cancer cell lines: MCF7 (breast carcinoma), HT-29 (colorectal
carcinoma), and HL-60 (acute promyelocytic leukemia). 

Materials and Methods
Cell cultures. All human cancer cell lines used in this study were
obtained from the American Type Culture Collection (Manassas,
VA, USA). The MCF7 human breast cancer cells, HT-29 colorectal
carcinoma cells, and HL-60 promyelocytic leukemia cells were
grown in Dulbecco’s modified Eagle’s medium (DMEM) (Life
Technologies, Grand Island, NY, USA), McCoy’s 5A (modified)
medium (Life Technologies), and Iscove’s Modification of DMEM
(Mediatech, Manassas, VA, USA), respectively, in a humidified
atmosphere at 37˚C with 5% CO2. The cell culture media were
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supplemented with 10% fetal bovine serum (Wisent, St-Bruno, QC,
Canada) and antibiotics (100 IU/ml penicillin and 100 μg/ml
streptomycin) (Life Technologies). Fetal bovine serum was
charcoal-stripped in the case of HL-60 cells and 50 μg/ml human
recombinant insulin (Wisent) were added to the cell culture of
MCF7 cells. Cell concentration and viability were determined using
a hemocytometer and the trypan blue (0.4%) exclusion test. 

Cell treatments. Cells were cultured in small (35×10 mm) or
medium (60×15 mm) Falcon tissue culture dishes to isolate total
RNA for gene-expression analysis, or to prepare cell lysates for
O-GlcNAc immunoassays. To modulate the level of O-GlcNAc,
cells in complete media were treated for 24 h with micromolar
concentrations of the OGA inhibitor thiamet G (Sigma-Aldrich,
Oakville, ON, Canada), or the OGT inhibitor 2-acetamido-1,3,4,6-
tetra-O-acetyl-2-deoxy-5-thio-α-D-glucopyranose (Ac-5SGlcNAc)
(kindly provided by Dr. David Vocadlo, Simon Fraser University,
Burnaby, BC, Canada) (19). Control cell cultures were exposed to
equal volumes of dimethyl sulfoxide vehicle.

Total RNA isolation and cDNA synthesis. Total mRNA was isolated
using Ambion TRIzol® reagent (Life Technologies, Grand Island,
NY, USA) according to the manufacturer’s protocol and quantified
with a Thermo Scientific™ Nanodrop 2000c UV-Vis
spectrophotometer (Wilmington, DE, USA). The Maxima First
Strand cDNA Synthesis Kit from Thermo Scientific (Waltham, MA,
USA) or SensiFAST cDNA Synthesis Kit from FroggaBio (Toronto,
ON, Canada) were used to synthesize cDNA from 1 μg RNA.

Real-time quantitative polymerase chain reaction (qPCR). Galectin
gene expression analysis was performed by real-time qPCR using a
CFX Connect™ Thermocycler (Bio-Rad, Mississauga, ON, Canada)
and PCR oligonucleotide primers described elsewhere (20). Briefly,
qPCR reaction mixes were prepared in 20 μl volumes containing 10 μl
SensiFAST™ SYBR® No-ROX Kit from Bioline (London, UK),
1.6 μl primer mix of forward and reverse primers (10 μM), 1 μl
of 10-fold diluted template cDNA, and 7.4 μl nuclease-free water.
Specificity of qPCR amplification was verified by the presence of
a single melt peak at a specific temperature for each amplicon.
Relative transcript levels were quantified by the Livak method (2−∆∆CT)
using β-actin (ACTB) as a reference gene.

Cell lysis and protein quantification. Following treatment, cells were
rinsed twice with ice-cold PBS and lysed in 200 μl of RIPA buffer
(10 mM Tris–HCl, pH 7.6, 1% Triton X-100, 0.1% sodium dodecyl
sulfate, 0.5 mM ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-
tetra-acetic acid, 0.1% sodium deoxycholate, and 140 mM NaCl)
supplemented with 100 μM phenylmethylsulfonyl fluoride, 100 μM
Na3VO4, 1 mM 4-(2-aminoethyl)benzenesulfonyl fluoride hydro-
chloride, 5 mM ethylenediaminetetra acetic acid, 50 μM leupeptin,
and 1 μM pepstatin. The cell lysates were incubated on ice for 10 min
before being passed three times through a 23G needle and centrifuged
at 10,000 × g for 15 min at 4˚C. Total protein concentration was
quantified spectrophotometrically using DC™ Protein Assay Kit II
(Bio-Rad). Absorbance was measured at 655 nm using a Model 3550
Microplate Reader (Bio-Rad).

Immunodot blot assay. The O-GlcNAc status of cells was evaluated
using a Bio-Dot® Microfiltration apparatus (Bio-Rad). Nitrocellulose
membranes (GE Healthcare, Chicago, IL, USA) were pre-wetted for

10 min with Tris-buffered saline (20 mM Tris-HCl, pH 7.5, 500 mM
NaCl) before placement into the apparatus. Protein extracts (4 μg in
200 μl PBS) were loaded into wells and transferred to the membrane
by gravity filtration for 90 min. Thereafter, the membrane was
blocked with 3% bovine serum albumin and 1% skim milk in Tris-
buffered saline with Tween (TBS-T) (20 mM Tris, pH 7.5, 500 mM
NaCl, 0.05% Tween 20) for 60 min at room temperature. The
membrane was then incubated overnight at 4˚C with mouse
monoclonal pan-specific primary antibody to O-GlcNAc (RL2)
(Thermo Scientific) diluted 1:1,000 in TBS-T with 5% BSA and 0.1%
NaN3. Following treatment with primary antibody, the membrane was
washed with TBS-T and incubated with horseradish peroxidase-
conjugated goat anti-mouse secondary antibody (Santa Cruz
Biotechnology, Dallas, TX, USA) diluted 1:10,000 in TBS-T with 3%
BSA and 1% non-fat dry milk at room temperature for 1 h. To
visualize immunodots, membranes were exposed to Luminata™
Classico Western HRP Substrate (Millipore, Etobicoke, ON, Canada)
or Clarity™ Western ECL substrate (Bio-Rad) and imaged with the
ChemiDoc® XRS system (Bio-Rad). Densitometry was performed
using ImageLab Software, version 5.2 (Bio-Rad).

Statistical analysis. Statistical analysis was performed using IBM
SPSS Statistics v.25 (IBM, Armonk, NY, USA) and Prism 7
(GraphPad Software, La Jolla, CA, USA) software. Student t-tests
or one-way analysis of variance (ANOVA) and post-hoc Tukey’s
honestly significant difference tests were used to determine
significant differences across treatment means depending on the data
set. At least three biological replicates were examined for each
treatment and data were presented as mean±SEM. Differences were
considered significant at p<0.05.

Results
Dose-dependent effects of OGA/OGT inhibitors on global O-
GlcNAc levels in human cancer cell lines. Thiamet G and Ac-
5SGlcNAc are currently the most potent and selective
inhibitors of OGA and OGT, respectively (19, 21). To broadly
determine the effectiveness of these inhibitors, we treated
adherent (MCF7) and suspended (HL-60) cell lines with
micromolar non-toxic concentrations of the drugs and
monitored global O-GlcNAc levels 24 h post-treatment.
Immunodot blot analysis revealed a dose-dependent increase
in global in O-GlcNAc levels following thiamet G exposure,
whereas a dose-dependent decrease in O-GlcNAc level was
observed after Ac-5SGlcNAc treatment in both cell lines
(Figure 1). These results establish the biological effectiveness
of OGA/OGT inhibitors in these cancer cell types. 

The effects of OGA/OGT inhibitors on galectin gene
expression in MCF7 human breast cancer cells. The galectin
expression profile of the MCF7 cell line is limited to three
galectins, LGALS1, LGALS3 and LGALS8, as reported
elsewhere (5). Considering these findings, qPCR was used
to quantify changes in the galectin mRNA expression profile
of MCF7 cells treated with inhibitors of OGA (10 μM
thiamet G) or OGT (50 μM Ac-5SGlcNAc). These
treatments did not change the expression of LGALS1 and
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LGALS8 compared to vehicle control-treated cells, however
the expression of LGALS3 was significantly (p<0.05) higher
in cells after OGA inhibition with thiamet G treatment
compared to OGT inhibition with Ac-5SGlcNAc treatment
(Figure 2).

The effects of OGA/OGT inhibitors on galectin expression in
HL-60 cells. Undifferentiated HL-60 cells robustly express
five galectins, LGALS1, LGALS3, LGALS8, LGALS9 and
LGALS12 (20, 22). To examine the sensitivity of this galectin
gene network to O-GlcNAc regulation, the cells were treated
for 24 h with 10 μM thiamet G and 50 μM Ac-5SGlcNAc.
Thiamet G treatment (high O-GlcNAc) significantly (p<0.05)

up-regulated the expression of LGALS12 compared to Ac-
5SGlcNAc (low O-GlcNAc), however, neither treatment
significantly altered the expression of other galectin genes
(Figure 3A). This finding was intriguing, as we had
previously shown that only LGALS12 was specifically down-
regulated in HL-60 cells upon DMSO-induced differentiation
into neutrophil-like cells (20). We were, thus, interested to
determine whether there were differences in the global O-
GlcNAc level between undifferentiated and differentiated HL-
60 cells. A 25-fold decrease of O-GlcNAc level was observed
in HL-60 cells treated for 3 days with 1.3% DMSO
(neutrophilic differentiation) in comparison with the control
cell culture (p<0.001, independent sample t-test) (Figure 3B).
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Figure 1. O-Linked β-N-acetyl-D-glucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase (OGA) inhibitors modify the global O-GlcNAc
level in human cancer cell lines. A and B: HL-60 and MCF7 cells were treated for 24 h with three different concentrations of OGA inhibitor thiamet
G or OGT inhibitor 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-5-thio-α-D-glucopyranose (Ac-5SGlcNAc) followed by immunodot blot analyses of
O-GlcNAc in quadruplicate for three biological replicates. C and D: Quantification of the immunodot blots of O-GlcNAc for MCF7 and HL-60
cells. The intensity of each dot was normalized to the average integral intensity of all dots. Opposing dose-dependent changes in O-GlcNAc levels
induced by thiamet G versus Ac-5SGlcNAc are evident. Data are presented as means±SEM (n=3). Significantly different at *p<0.05, **p<0.01,
and ***p<0.001 versus control (normalized to 1, dotted lines) by one-sample t-test.



Thus, in both cases (treatment with OGT inhibitor or DMSO-
induced cell differentiation), a lower level of O-GlcNAc was
positively associated with a lower expression of LGALS12 in
HL-60 cells. 

The expression of galectins in HT-29 cells. HT-29 cells express
most of the human galectins including LGALS1, LGALS2,
LGALS3, LGALS4, LGALS7, LGALS8, and LGALS9 (4, 5).
Considering the intricate galectin network present in HT-29
cells, we decided to examine O-GlcNAcylation not only via
direct inhibition of OGA and OGT, but also via inducing
enterocytic differentiation by cell culture over-confluency (cell
crowding stress) (23). To select optimal conditions for cell-
crowding stress, HT-29 cells were plated at a density of
0.1×106 cells/ml in 5 ml of McCoy’s 5A medium in T25 flasks
and their growth was monitored daily over 6 days (Figure 4A).
Exponential growth was observed between days 1 and 4.
Importantly, cell viability was not significantly compromised
even after entry into stationary phase (completely confluent
monolayer) after day 4. Based on these observations, HT-29
cell RNA was extracted on day 3 and day 6 to assess O-
GlcNAc levels and galectin expression in the exponential
(control) and stationary (cell-crowding stress) phases. As
expected, thiamet G significantly increased the global level of
O-GlcNAc in HT-29 cells, while Ac-5SGlcNAc and crowding
stress significantly reduced it (Figure 4B). 

We next examined the expression of specific galectin gene
in response to thiamet G, Ac-5SGlcNAc, and crowding stress
and found that these treatments induced only moderate
changes in galectin gene expression in HT-29 cells (not
exceeding 2-to 3-fold) (Figure 4C). There were no
significant differences in the expression of any of the
galectin genes upon thiamet G or Ac-5SGlcNAc treatment
(p>0.05, Tukey’s honestly significant difference test). In
contrast, we did observe a significant increase in the
expression of LGALS3 (p=0.011), LGALS4 (p=0.007), and
LGALS8 (p=0.007) in cells subject to crowding stress versus
control cells (multivariate tests of between-subject effects).
Importantly, although stressed cells had low levels of O-
GlcNAc similarly to that of Ac-5SGlcNAc-treated cells, the
expression of LGALS1, LGALS3, LGALS4, and LGALS7 was
found to be significantly different (p<0.05) between these
two treatments (Figure 4C). Thus, while expression of
certain galectin genes increases following crowding stress,
the direct inhibition of O-GlcNAc does not appear to affect
overall galectin gene expression in HT-29 cells.

Discussion

Post-translational modification of intracellular proteins with O-
GlcNAc represents a powerful signaling pathway that acts as
an adaptive mechanism promoting cytoprotection, and is
activated both in cancer cells and in cells treated with stress

stimuli (17, 18). O-GlcNAcylation often competes with protein
phosphorylation to control a variety of regulatory proteins,
including transcription factors (15). In our study, we
investigated galectin expression profiles in three different
human cancer cell lines (MCF7, HL-60, and HT-29),
examining their sensitivity to the inhibition and stimulation of
O-GlcNAcylation using the highly selective drugs, Ac-
5SGlcNAc and thiamet G (19, 21), respectively. As expected,
these drugs induced robust and opposite changes in global O-
GlcNAc levels in all tested cell lines, however, cell-specific
changes in the expression of only limited number of galectin
genes were noted. In particular, O-GlcNAc induced moderate
increases not exceeding 2-fold in the expression of LGALS3 in
MCF7 cells and LGALS12 in HL-60 cells. The expression of
other galectin genes was not affected by O-GlcNAc in these
cell lines. Surprisingly, the full network of seven galectin genes
in HT-29 cells was unaffected by chemical modulation of O-
GlcNAc. These data suggest that at the transcriptional level, O-
GlcNAc signaling pathways have limited influence on galectin
gene-expression profiles in human cancer cell lines, although
cell-specific regulation of selected galectin genes (LGALS3 and
LGALS12) does occur in MCF7 and HL-60 cells. In the case
of MCF7 cells, this regulation may be important to maintain
high levels of intracellular galectin-3 which mediates protection
of breast cancer cells from apoptosis (24) and maintains the
stemness of cancer cells (25). The latter stemness option can
also be applied to O-GlcNAc-dependent up-regulation of
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Figure 2. Effects of O-linked β-N-acetyl-D-glucosamine (O-GlcNAc)
transferase (OGT) and O-GlcNAcase (OGA) inhibitors on the
expression of galectin genes (LGALS) in MCF7 cells. Cells were treated
with either OGA inhibitor thiamet G (10 μM) or OGT inhibitor 
2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-5-thio-α-D-glucopyranose
(Ac-5SGlcNAc) (50 μM) for 24 h. Quantification of real-time
quantitative polymerase chain reaction results was performed using the
Livak method with β-actin gene (ACTB) as a reference; fold expression
differences compared to dimethyl sulfoxide vehicle are shown. Data are
presented as means±SEM (n=3). Significantly different at *p<0.05 by
unpaired t-test.



LGALS12 in HL-60 cells since galectin-12 is known to inhibit
differentiation of promyelocytic progenitor cells into
neutrophilic lineage (26). Indeed, in agreement with previous
reports regarding the inhibition of O-GlcNAc in specific
lineages of differentiated cells (27-30), we found a significant
decrease of O-GlcNAc level in HL-60 cells differentiated into
neutrophil-like cells through DMSO treatment, and in HT-29
cells under cell-crowding stress (spontaneous post-confluency
induced differentiation into enterocytes). The low level of O-
GlcNAc in differentiated cells was similar to that in Ac-
5SGlcNAc-treated HL-60 and HT-29 cells. However, galectin
expression profiles were significantly different between
differentiated and undifferentiated cells, suggesting O-GlcNAc-
independent regulation of galectin gene expression by
alternative mechanisms.

It should be noted that even if O-GlcNAc has limited
influence on expression of certain galectin genes, galectin
protein abundance and localization may be significantly
affected by this mechanism, especially between resting cells
(high O-GlcNAc) and differentiated cells (low O-GlcNAc).
Indeed, O-GlcNAc regulates trafficking of proteins between
intracellular compartments and can inhibit protein secretion
(31). Although some reports confirm requirements of
galectins for cell differentiation (32, 33), little is known
about the molecular mechanisms that drive the trafficking
and secretion of these soluble proteins. If global O-
GlcNAcylation plays a role in galectin trafficking rather than
in gene expression, it would be reasonable to expect that
galectin secretion will be stimulated in differentiated cells,
while less galectins will be accumulated in the intracellular
compartments due to low O-GlcNAc. This hypothesis
remains to be tested in future studies.

In conclusion, our study revealed two different O-GlcNAc-
sensitive galectin genes in breast cancer MCF7 cells
(LGALS3) and acute leukemia HL-60 cells (LGALS12),
whereas galectin expression was insensitive to O-GlcNAc
manipulation in colorectal carcinoma HT-29 cells. Further
studies are underway to determine the molecular mechanisms
of how O-GlcNAc controls the expression of LGALS3 and
LGALS12 genes and whether O-GlcNAc controls secretion
and subcellular localization of galectin proteins in cancer cells. 
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