70 research outputs found

    The influence of demand variability on the performance of a make-to-stock queue

    Get PDF
    Variability, in general, has a deteriorating effect on the performance of stochastic inventory systems. In particular, previous results indicate that demand variability causes a performance degradation in terms of inventory related costs when production capacity is unlimited. In order to investigate the effects of demand variability in capacitated production settings, we analyze a make-to-stock queue with general demand arrival times operated according to a basestock policy. We show that when demand inter-arrival distributions are ordered in a stochastic sense, increased arrival time variability indeed leads to an augmentation of optimal base-stock levels and to a corresponding increase in optimal inventory related costs. We quantify these effects through several numerical examplesproduction/inventory; make-to-stock; base-stock; stochastic comparisons; GI/M/1, POLICIES; COSTS; SYSTEMS; LEAD

    Discrete Event Dyn Syst DOI 10.1007/s10626-006-0002-z Optimal Threshold Levels in Stochastic Fluid Models via Simulation-based Optimization

    No full text
    Abstract A number of important problems in production and inventory control involve optimization of multiple threshold levels or hedging points. We address the problem of finding such levels in a stochastic system whose dynamics can be modelled using generalized semi-Markov processes (GSMP). The GSMP framework enables us to compute several performance measures and their sensitivities from a single simulation run for a general system with several states and fairly general state transitions. We then use a simulation-based optimization method, sample-path optimization, for finding optimal hedging points. We report numerical results for systems with more than twenty hedging points and service-level type probabilistic constraints. In these numerical studies, our method performed quite well on problems which are considered very difficult by current standards. Some applications falling into this framework include designing manufacturing flow controllers, using capacity options and subcontracting strategies, and coordinating production and marketing activities under demand uncertainty

    Strategic customers in a transportation station when is it optimal to wait?

    No full text
    We consider a transportation station, where customers arrive according to a Poisson process. A transportation facility visits the station according to a renewal process and serves at each visit a random number of customers according to its capacity. We assume that the arriving customers decide whether to join the station or balk, based on a natural reward-cost structure. We study the strategic behavior of the customers and determine their symmetric Nash equilibrium strategies under two levels of information
    • 

    corecore