26 research outputs found

    Broadband forward scattering from dielectric cubic nanoantenna in lossless media

    Get PDF
    Dielectric photonics platform provides unique possibilities to control light scattering via utilizing high-index dielectric nanoantennas with peculiar optical signatures. Despite the intensively growing field of all-dielectric nanophotonics, it is still unclear how surrounding media affect scattering properties of a nanoantenna with complex multipole response. Here, we report on light scattering by a silicon cubic nanoparticle embedded in lossless media, supporting optical resonant response. We show that significant changes in the scattering process are governed by the electro-magnetic multipole resonances, which experience spectral red-shift and broadening over the whole visible and near-infrared spectra as the indices of media increase. Most interestingly, the considered nanoantenna exhibits the broadband forward scattering in the visible and near-infrared spectral ranges due to the Kerker-effect in high-index media. The revealed effect of broadband forward scattering is essential for highly demanding applications in which the influence of the media is crucial such as health-care, e.g., sensing, treatment efficiency monitoring, and diagnostics. In addition, the insights from this study are expected to pave the way toward engineering the nanophotonic systems including but not limited to Huygens-metasurfaces in media within a single framework

    Optomechanical manipulation with hyperbolic metasurfaces

    Full text link
    Auxiliary nanostructures introduce additional flexibility into optomechanical manipulation schemes. Metamaterials and metasurfaces capable to control electromagnetic interactions at the near-field regions are especially beneficial for achieving improved spatial localization of particles, reducing laser powers required for trapping, and for tailoring directivity of optical forces. Here, optical forces acting on small particles situated next to anisotropic substrates, are investigated. A special class of hyperbolic metasurfaces is considered in details and is shown to be beneficial for achieving strong optical pulling forces in a broad spectral range. Spectral decomposition of the Green functions enables identifying contributions of different interaction channels and underlines the importance of the hyperbolic dispersion regime, which plays the key role in optomechanical interactions. Homogenised model of the hyperbolic metasurface is compared to its metal-dielectric multilayer realizations and is shown to predict the optomechanical behaviour under certain conditions related to composition of the top layer of the structure and its periodicity. Optomechanical metasurfaces open a venue for future fundamental investigations and a range of practical applications, where accurate control over mechanical motion of small objects is required

    Evolution of multipole moments in silicon nanocylinder while varying the refractive index of surrounding medium

    Get PDF
    Here we use multipole decomposition approach to study optical properties of a silicon nanocylinder in different lossless media. We show that resonant peaks of multipole moments experience red shift, smoothing and broadening. Worth noting that electric multipoles experience bigger red shift than their magnetic counterparts. Our results can be applied to design optical devices within a single framework. © 2020 IOP Publishing Ltd

    On-chip beam rotators, polarizers and adiabatic mode converters through low-loss waveguides with variable cross-sections

    Get PDF
    Photonics integrated circuitry would benefit considerably from the ability to arbitrarily control waveguide cross-sections with high precision and low loss, in order to provide more degrees of freedom in manipulating propagating light. Here, we report on a new optical-fibres-compatible glass waveguide by femtosecond laser writing, namely spherical phase induced multi-core waveguide (SPIM-WG), which addresses this challenging task with three dimensional on-chip light control. Precise deformation of cross-sections is achievable along the waveguide, with shapes and sizes finely controllable of high resolution in both horizontal and vertical transversal directions. We observed that these waveguides have high refractive index contrast of 0.017, low propagation loss of 0.14 dB/cm, and very low coupling loss of 0.19 dB coupled from a single mode fibre. SPIM-WG devices were easily fabricated that were able to perform on-chip beam rotation through varying angles, or manipulate polarization state of propagating light for target wavelengths. We also demonstrated SPIM-WG mode converters that provide arbitrary adiabatic mode conversion with high efficiency between symmetric and asymmetric non-uniform modes; examples include circular, elliptical modes and asymmetric modes from ppKTP waveguides which are generally applied in frequency conversion and quantum light sources. Created inside optical glass, these waveguides and devices have the capability to operate across ultra-broad bands from visible to infrared wavelengths. The compatibility with optical fibre also paves the way toward packaged photonic integrated circuitry, which usually needs input and output fibre connections

    On-chip beam rotators, polarizers and adiabatic mode converters through low-loss waveguides with variable cross-sections

    Get PDF
    Photonics integrated circuitry would benefit considerably from the ability to arbitrarily control waveguide cross-sections with high precision and low loss, in order to provide more degrees of freedom in manipulating propagating light. Here, we report on a new optical-fibres-compatible glass waveguide by femtosecond laser writing, namely spherical phase induced multi-core waveguide (SPIM-WG), which addresses this challenging task with three dimensional on-chip light control. Precise deformation of cross-sections is achievable along the waveguide, with shapes and sizes finely controllable of high resolution in both horizontal and vertical transversal directions. We observed that these waveguides have high refractive index contrast of 0.017, low propagation loss of 0.14 dB/cm, and very low coupling loss of 0.19 dB coupled from a single mode fibre. SPIM-WG devices were easily fabricated that were able to perform on-chip beam rotation through varying angles, or manipulate polarization state of propagating light for target wavelengths. We also demonstrated SPIM-WG mode converters that provide arbitrary adiabatic mode conversion with high efficiency between symmetric and asymmetric non-uniform modes; examples include circular, elliptical modes and asymmetric modes from ppKTP waveguides which are generally applied in frequency conversion and quantum light sources. Created inside optical glass, these waveguides and devices have the capability to operate across ultra-broad bands from visible to infrared wavelengths. The compatibility with optical fibre also paves the way toward packaged photonic integrated circuitry, which usually needs input and output fibre connections

    Orthonormal complex hybrid guided mode coupling over a discontinuity in a plasmonic waveguide

    No full text
    We generalized an expression for expansion coefficients to determine the orthonormal complex hybrid guided mode coupling over a small step discontinuity which allowing prediction of the localised surface intensity on a plasmonic waveguide for design of devices for integrated surface-enhanced spectroscopy

    A Photonic Nanojet as Tunable and Polarization‐Sensitive Optical Tweezers

    No full text
    The ability to manipulate small objects with focused laser beams has opened a venue for investigating dynamical phenomena relevant to both fundamental and applied sciences. However, manipulating nano-sized objects requires subwavelength field localization, provided by auxiliary nanoand microstructures. Particularly, dielectric microparticles can be used to confine light to an intense beam with a subwavelength waist, called a photonic nanojet (PNJ), which can provide sufficient field gradients for trapping nano-objects. Herein, the scheme for wavelength-tunable and nanoscale-precise optical trapping is elaborated, and the possibility of lateral nanoparticle movement using the PNJ’s side lobes is shown for the first time. In addition, the possibility of subwavelength positioning using polarization switching is shown. The estimated stability with respect to Brownian motion is higher compared to conventional optical trapping schemes
    corecore