262 research outputs found

    Time Use During Recessions

    Get PDF
    We use data from the American Time Use Survey (ATUS), covering both the recent recession and the pre-recessionary period, to explore how foregone market work hours are allocated to other activities over the business cycle. Given the short time series, it is hard to distinguish business cycle effects from low frequency trends by simply comparing time spent on a given category prior to the recession with time spent on that category during the recession. Instead, we identify the business cycle effects on time use using cross state variation with respect to the severity of the recessions. We find that roughly 30% to 40% of the foregone market work hours are allocated to increased home production. Additionally, 30% of the foregone hours are allocated to increased sleep time and increased television watching. Other leisure activities absorb 20% of the foregone market work hours. We use our evidence from the ATUS to calibrate and test the predictions of workhorse macroeconomic models with home production. We show that the quantitative implications of these models regarding the allocation of time over the business cycle matches reasonably well the actual behavior of households.

    Pion-Kaon Scattering near the Threshold in Chiral SU(2) Perturbation Theory

    Get PDF
    In the context of chiral SU(2) perturbation theory, pion-kaon scattering is analysed near the threshold to fourth chiral order. The scattering amplitude is calculated both in the relativistic framework and by using an approach similar to heavy baryon chiral perturbation theory. Both methods lead to equivalent results. We obtain relations between threshold parameters, valid to fourth chiral order, where all those combinations of low-energy constants which are not associated with chiral-symmetry breaking terms drop out. The remaining low-energy constants can be estimated using chiral SU(3) symmetry. Unfortunately, the experimental information is not precise enough to test our low-energy theorems.Comment: 38 pages, 5 figures, PhD Thesis, references adde

    Measurements of the \gamma * p --> \Delta(1232) reaction at low Q2

    Full text link
    We report new p(e,ep)π(\vec{e},e^\prime p)\pi^\circ measurements in the Δ+(1232)\Delta^{+}(1232) resonance at the low momentum transfer region utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The mesonic cloud dynamics are predicted to be dominant and appreciably changing in this region while the momentum transfer is sufficiently low to be able to test chiral effective calculations. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations with pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements

    Measurement of the Partial Cross Sections s(TT), s(LT) and [s(T)+epsilon*s(L)] of the p(e,e' pi+)n Reaction in the Delta(1232) Resonance

    Full text link
    We report new precision p(e,e' pi+})n measurements in the Delta(1232) resonance at Q2 = 0.127(GeV/c)2 obtained at the MIT-Bates Out-Of-Plane scattering facility. These are the lowest, but non-zero, Q2 measurements in the pi+ channel. The data offer new tests of the theoretical calculations, particularly of the background amplitude contributions. The chiral effective field theory and Sato-Lee model calculations are not in agreement with this experiment

    Measurements of the Generalized Electric and Magnetic Polarizabilities of the Proton at Low Q2 Using the VCS Reaction

    Get PDF
    The mean square polarizability radii of the proton have been measured for the first time in a virtual Compton scattering experiment performed at the MIT-Bates out-of-plane scattering facility. Response functions and polarizabilities obtained from a dispersion analysis of the data at Q2=0.06 GeV2/c2 are in agreement with O(p3) heavy baryon chiral perturbation theory. The data support the dominance of mesonic effects in the polarizabilities, and the increase of beta with increasing Q2 is evidence for the cancellation of long-range diamagnetism by short-range paramagnetism from the pion cloud

    Investigation of the conjectured nucleon deformation at low momentum transfer

    Full text link
    We report new precise H(e,ep)π0(e,e^\prime p)\pi^0 measurements at the Δ(1232)\Delta(1232) resonance at Q2=0.127Q^2= 0.127 (GeV/c)2^2 using the MIT/Bates out-of-plane scattering (OOPS) facility. The data reported here are particularly sensitive to the transverse electric amplitude (E2E2) of the γNΔ\gamma^* N\to\Delta transition. Analyzed together with previous data yield precise quadrupole to dipole amplitude ratios EMR=(2.3±0.3stat+sys±0.6model)EMR = (-2.3 \pm 0.3_{stat+sys} \pm 0.6_{model})% and CMR=(6.1±0.2stat+sys±0.5model)CMR = (-6.1 \pm 0.2_{stat+sys}\pm 0.5_{model})% and for M1+3/2=(41.4±0.3stat+sys±0.4model)(103/mπ+)M^{3/2}_{1+} = (41.4 \pm 0.3_{stat+sys}\pm 0.4_{model})(10^{-3}/m_{\pi^+}). They give credence to the conjecture of deformation in hadronic systems favoring, at low Q2Q^2, the dominance of mesonic effects.Comment: 4 pages, 1figur

    Lowest Q^2 Measurement of the gamma*p -> Delta Reaction: Probing the Pionic Contribution

    Full text link
    To determine nonspherical angular momentum amplitudes in hadrons at long ranges (low Q^2), data were taken for the p(\vec{e},e'p)\pi^0 reaction in the Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are: M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model}) (10^{-3}/m_{\pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst} +/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/- 0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of constituent quark models but are in reasonable agreement with lattice calculations with non-linear (chiral) pion mass extrapolations, with chiral effective field theory, and with dynamical models with pion cloud effects. These results confirm the dominance, and general Q^2 variation, of the pionic contribution at large distances.Comment: 6 pages, 3 figures, 1 tabl
    corecore