39 research outputs found
The detection, treatment, and biology of epithelial ovarian cancer
Ovarian cancer is particularly insidious in nature. Its ability to go undetected until late stages coupled with its non-descript signs and symptoms make it the seventh leading cause of cancer related deaths in women. Additionally, the lack of sensitive diagnostic tools and resistance to widely accepted chemotherapy regimens make ovarian cancer devastating to patients and families and frustrating to medical practitioners and researchers. Here, we provide an in-depth review of the theories describing the origin of ovarian cancer, molecular factors that influence its growth and development, and standard methods for detection and treatment. Special emphasis is focused on interactions between ovarian tumors and the innate and adaptive immune system and attempts that are currently underway to devise novel immunotherapeutic approaches for the treatment of ovarian tumors
MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells
<p>Abstract</p> <p>Background</p> <p>Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition.</p> <p>Results</p> <p>Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL), which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16<sup>low </sup>targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors.</p> <p>Conclusion</p> <p>MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in metastasizing within the peritoneal cavity and also at overcoming anti-tumor innate immune responses.</p
Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes
<p>Abstract</p> <p>Background</p> <p>MUC16 is a cell surface mucin expressed at high levels by epithelial ovarian tumors. Following proteolytic cleavage, cell surface MUC16 (csMUC16) is shed in the extracellular milieu and is detected in the serum of cancer patients as the tumor marker CA125. csMUC16 acts as an adhesion molecule and facilitates peritoneal metastasis of ovarian tumors. Both sMUC16 and csMUC16 also protect cancer cells from cytotoxic responses of natural killer (NK) cells. In a previous study we demonstrated that sMUC16 binds to specific subset of NK cells. Here, we identify the csMUC16/sMUC16 binding partner expressed on immune cells.</p> <p>Results</p> <p>Analysis of immune cells from the peripheral blood and peritoneal fluid of ovarian cancer patients indicates that in addition to NK cells, sMUC16 also binds to B cells and monocytes isolated from the peripheral blood and peritoneal fluid. I-type lectin, Siglec-9, is identified as the sMUC16 receptor on these immune cells. Siglec-9 is expressed on approximately 30-40% of CD16<sup>pos</sup>/CD56<sup>dim </sup>NK cells, 20-30% of B cells and >95% of monocytes. sMUC16 binds to the majority of the Siglec-9<sup>pos </sup>NK cells, B cells and monocytes. sMUC16 is released from the immune cells following neuraminidase treatment. Siglec-9 transfected Jurkat cells and monocytes isolated from healthy donors bind to ovarian tumor cells via Siglec-9-csMUC16 interaction.</p> <p>Conclusions</p> <p>Recent studies indicate that csMUC16 can act as an anti-adhesive agent that blocks tumor-immune cell interactions. Our results demonstrate that similar to other mucins, csMUC16 can also facilitate cell adhesion by interacting with a suitable binding partner such as mesothelin or Siglec-9. Siglec-9 is an inhibitory receptor that attenuates T cell and NK cell function. sMUC16/csMUC16-Siglec-9 binding likely mediates inhibition of anti-tumor immune responses.</p
DcR3 binds to ovarian cancer via heparan sulfate proteoglycans and modulates tumor cells response to platinum with corresponding alteration in the expression of BRCA1
Abstract Background Overcoming platinum resistance is a major obstacle in the treatment of Epithelial Ovarian Cancer (EOC). In our previous work Decoy Receptor 3 (DcR3) was found to be related to platinum resistance. The major objective of this work was to define the cellular interaction of DcR3 with EOC and to explore its effects on platinum responsiveness. Methods We studied cell lines and primary cultures for the expression of and the cells ability to bind DcR3. Cells were cultured with DcR3 and then exposed to platinum. Cell viability was determined by MTT assay. Finally, the cells molecular response to DcR3 was studied using real time RT-PCR based differential expression arrays, standard RT-PCR, and Western blot. Results High DcR3 in the peritoneal cavity of women with EOC is associated with significantly shorter time to first recurrence after platinum based therapy (p = 0.02). None-malignant cells contribute DcR3 in the peritoneal cavity. The cell lines studied do not secrete DcR3; however they all bind exogenous DcR3 to their surface implying that they can be effected by DcR3 from other sources. DcR3s protein binding partners are minimally expressed or negative, however, all cells expressed the DcR3 binding Heparan Sulfate Proteoglycans (HSPGs) Syndecans-2, and CD44v3. DcR3 binding was inhibited by heparin and heparinase. After DcR3 exposure both SKOV-3 and OVCAR-3 became more resistant to platinum with 15% more cells surviving at high doses. On the contrary CaOV3 became more sensitive to platinum with 20–25% more cell death. PCR array analysis showed increase expression of BRCA1 mRNA in SKOV-3 and OVCAR-3 and decreased BRCA1 expression in CaOV-3 after exposure to DcR3. This was confirmed by gene specific real time PCR and Western blot analysis. Conclusions Non-malignant cells contribute to the high levels of DcR3 in ovarian cancer. DcR3 binds readily to EOC cells via HSPGs and alter their responsiveness to platinum chemotherapy. The paradoxical responses seen were related to the expression pattern of HSPGs available on the cells surface to interact with. Although the mechanism behind this is not completely known alterations in DNA repair pathways including the expression of BRCA1 appear to be involved.</p
Effects of Extracellular ATP on Bovine Lung Endothelial and Epithelial Cell Monolayer Morphologies, Apoptoses, and Permeabilities▿
Pneumonia in cattle is an important disease both economically and in terms of animal welfare. Recent evidence in other species has shown ATP to be an important modulator of inflammation in the lung, where it is released by activated alveolar macrophages and damaged lung cells. Whether ATP serves a similar process during infection in the bovine lung is unknown. In the present study, we examined the effects of ATP treatment on the morphology, apoptosis, and permeability of bovine pulmonary epithelial (BPE) cells and bovine pulmonary microvascular endothelial cells (BPMEC). Monolayers of BPE cells underwent striking morphological changes when exposed to ATP that included separation of the cells. Neither BPE cells nor BPMEC exhibited increased apoptosis in response to ATP. BPE cell and BPMEC monolayers displayed virtually identical increases in permeability when exposed to ATP, with a 50% change occurring within the first hour of exposure. Both cell types contained mRNA for the P2X7 receptor, a known receptor for ATP. In BPE cells, but not BPMEC, the change in permeability in response to ATP was reversed by the addition of a P2X7 receptor antagonist. If similar permeability changes occur in vivo, they could be a factor in vascular leakage into lung airspaces during pneumonia
Oxidative Phosphorylation: A Target for Novel Therapeutic Strategies Against Ovarian Cancer
Aerobic glycolysis is an important metabolic adaptation of cancer cells. There is growing evidence that oxidative phosphorylation is also an active metabolic pathway in many tumors, including in high grade serous ovarian cancer. Metastasized ovarian tumors use fatty acids for their energy needs. There is also evidence of ovarian cancer stem cells privileging oxidative phosphorylation (OXPHOS) for their metabolic needs. Metformin and thiazolidinediones such as rosiglitazone restrict tumor growth by inhibiting specific steps in the mitochondrial electron transport chain. These observations suggest that strategies to interfere with oxidative phosphorylation should be considered for the treatment of ovarian tumors. Here, we review the literature that supports this hypothesis and describe potential agents and critical control points in the oxidative phosphorylation pathway that can be targeted using small molecule agents. In this review, we also discuss potential barriers that can reduce the efficacy of the inhibitors of oxidative phosphorylation
Selection of DNA aptamers for an ovarian cancer cell line using high-throughput sequencing (Abstract POSTER-THER-1429)
Humanized antibodies have been extensively investigated as therapeutic as well as diagnostic agents. While the antigen specificity offered by antibodies makes them very attractive for such theranostic applications, their large-scale synthesis can be challenging and expensive. We are therefore investigating alternate strategies to develop agents that can be used for in vivo monitoring as well as for treatment of epithelial ovarian tumors. One approach is to develop Single Stranded DNA aptamers that selectively bind to ovarian cancer cells. The ssDNA aptamers can be synthesized using template-driven or de novo chemical synthetic approaches to manufacture agents at a large scale and low cost. The challenge however, is to develop aptamers that are specific to ovarian cancer cells. In the current study, we report a streamlined approach that incorporates the cell-based Systematic Evolution of Ligands by Exponential Enrichment (cell-SELEX) with DNASeq technology to select aptamers that recognize ovarian cancer cells. An ssDNA aptamer library composed of ~1015 sequences was subjected to ten iterative rounds of selection against the ovarian cancer cell line OVCAR-3. Aptamers from each round were amplified by asymmetric PCR and subjected to high-throughput sequencing. Eight ssDNA aptamers enriched through the selection process were identified by DNASeq and subsequent bioinformatics analysis and their selectivity and affinity for OVCAR-3 cells was determined by flow cytometry. Two of these aptamers (Apt-1 and Apt-8) showed significant binding to OVCAR-3 cells with Kd of 24 and 28 nM, respectively. Secondary structure analysis using mfold indicated that Apt-1 and Apt-8 had defined secondary structures resulting from ordered base pairing of the ssDNA. The inclusion of high-throughput sequencing techniques has therefore allowed rapid identification of theranostic aptamers from an large randomized library of ssDNA sequences. Our ongoing experiments are focused on coupling of the ovarian cancer cell-specific ssDNA aptamers to contrast agents or cytotoxic drugs. The ssDNA aptamers coupled to contrast agents are specifically being investigated for in vivo imaging of ovarian cancer masses in the peritoneum whereas the aptamers coupled to drugs can be used for the treatment of ovarian cancer