353 research outputs found

    Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers

    Get PDF
    Time- and angle-resolved photoemission spectroscopy (trARPES) using femtosecond extreme ultraviolet high harmonics has recently emerged as a powerful tool for investigating ultrafast quasiparticle dynamics in correlated-electron materials. However, the full potential of this approach has not yet been achieved because, to date, high harmonics generated by 800 nm wavelength Ti:Sapphire lasers required a trade-off between photon flux, energy and time resolution. Photoemission spectroscopy requires a quasi-monochromatic output, but dispersive optical elements that select a single harmonic can significantly reduce the photon flux and time resolution. Here we show that 400 nm driven high harmonic extreme-ultraviolet trARPES is superior to using 800 nm laser drivers since it eliminates the need for any spectral selection, thereby increasing photon flux and energy resolution to < 150 meV while preserving excellent time resolution of about 30 fs. © 2014 The Authors

    Self-amplified photo-induced gap quenching in a correlated electron material.

    Get PDF
    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains-on a microscopic level-the extremely fast response of this material to ultrafast optical excitation

    Nonresonant control of multimode molecular wave packets at room temperature

    Get PDF
    Includes bibliographical references (pages 033001-4).We demonstrate the creation and measurement of shaped multimode vibrational wave packets with overtone and combination mode excitation in CCl4. Excitation of wave packets through nonresonant impulsive stimulated Raman scattering allows for coherent control of molecular vibrations without passing through an electronic resonance. This technique is therefore very general and can be implemented in a large class of molecular gases and liquids at STP, which were previously inaccessible because their resonances are in the VUV

    Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy

    Full text link
    A laser-based angle resolved photoemission (APRES) system utilizing 6 eV photons from the fourth harmonic of a mode-locked Ti:sapphire oscillator is described. This light source greatly increases the momentum resolution and photoelectron count rate, while reducing extrinsic background and surface sensitivity relative to higher energy light sources. In this review, the optical system is described, and special experimental considerations for low-energy ARPES are discussed. The calibration of the hemispherical electron analyzer for good low-energy angle-mode performance is also described. Finally, data from the heavily studied high T_c superconductor Bi2Sr2CaCu2O8+\delta (Bi2212) is compared to the results from higher photon energies.Comment: Please download final version from Journal-Re

    Ultrafast optically induced spin transfer in ferromagnetic alloys

    Get PDF
    The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and length scales requires new approaches in experiment and theory to observe and understand these excitations. The ultimate speed limit for all-optical manipulation requires control schemes for which the electronic or magnetic subsystems of the materials are coherently manipulated on the time scale of the laser excitation pulse. In our work, we provide experimental evidence of such a direct, ultrafast, and coherent spin transfer between two magnetic subsystems of an alloy of Fe and Ni. Our experimental findings are fully supported by time-dependent density functional theory simulations and, hence, suggest the possibility of coherently controlling spin dynamics on subfemtosecond time scales, i.e., the birth of the research area of attomagnetism

    Highly coherent light at 13 nm generated by use of quasi-phase-matched high-harmonic generation

    Get PDF
    Includes bibliographical references (page 1359).Young's double pinhole experiment, we demonstrate that quasi-phase-matched high-harmonic generation produces beams with very high spatial coherence at wavelengths around 13 nm. To our knowledge these are the highest spatial coherence values ever measured at such short wavelengths from any source without spatial filtering. This results in a practical, small-scale, coherent, extreme-ultraviolet source that is useful for applications in metrology, imaging, and microscopy

    Time-resolved x-ray photoabsorption and diffraction on timescales from ns to fs

    Full text link
    Time-resolved x-ray diffraction with picosecond time resolution is used to observe scattering from coherent acoustic phonons in laser-excited InSb crystals. The observed oscillations in the crystal reflectivity are in agreement with a model based on dynamical diffraction theory. Synchrotron radiation pulses of ∼300 fs in duration have been generated by femtosecond laser pulses modulating the electron beam in the Advanced Light Source. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87631/2/664_1.pd
    • …
    corecore