69 research outputs found

    Strategies for neural control of prosthetic limbs: From electrode interfacing to 3D printing

    Get PDF
    Limb amputation is a major cause of disability in our community, for which motorised prosthetic devices offer a return to function and independence. With the commercialisation and increasing availability of advanced motorised prosthetic technologies, there is a consumer need and clinical drive for intuitive user control. In this context, rapid additive fabrication/prototyping capacities and biofabrication protocols embrace a highly-personalised medicine doctrine that marries specific patient biology and anatomy to high-end prosthetic design, manufacture and functionality. Commercially-available prosthetic models utilise surface electrodes that are limited by their disconnect between mind and device. As such, alternative strategies of mind-prosthetic interfacing have been explored to purposefully drive the prosthetic limb. This review investigates mind to machine interfacing strategies, with a focus on the biological challenges of long-term harnessing of the user\u27s cerebral commands to drive actuation/movement in electronic prostheses. It covers the limitations of skin, peripheral nerve and brain interfacing electrodes, and in particular the challenges of minimising the foreign-body response, as well as a new strategy of grafting muscle onto residual peripheral nerves. In conjunction, this review also investigates the applicability of additive tissue engineering at the nerve-electrode boundary, which has led to pioneering work in neural regeneration and bioelectrode development for applications at the neuroprosthetic interface

    Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering

    Get PDF
    Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation, and conductive scaffolds for cell support and tissue engineering. Here we demonstrate the utility of electroactive CP Polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly β-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs, and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modelling, translational drug discovery and regenerative medicine

    Hybrid self‐assembling peptide/gelatin methacrylate (gelma) bioink blend for improved bioprintability and primary myoblast response

    Get PDF
    Organ fabrication as the solution to renewable donor demands requires the ability to spatially deposit viable cells into biologically relevant constructs necessitating reliable and effective cell deposition through bioprinting and the subsequent ability to mature. However, effective bioink development demands advances in both printability and control of cellular response. Effective bioinks are designed to retain shape fidelity, influence cellular behavior, having bioactive morphologies stiffness and highly hydrated environment. Hybrid hydrogels are promising candidates as they reduce the need to re‐engineer materials for tissue‐specific properties, with each component offering beneficial properties. Herein, a multicomponent bioink is developed whereby gelatin methacrylate (GelMA) and fluorenylmethoxycarbonyprotected self‐assembling peptides (Fmoc‐SAPs) undergo coassembly to yield a tuneable bioink. This study shows that the reported fibronectin‐inspired fmoc‐SAPs present cell attachment epitopes RGD and PHSRN in the form of bioactive nanofibers and that the GelMA enables superior printability, stability in media, and controlled mechanical properties. Importantly, when in the hybrid format, no disruption to either the methacrylate crosslinking of GelMA, or self‐assembled peptide fibril formation is observed. Finally, studies with primary myoblasts show over 98% viability at 72 h and differentiation into fused myotubes at one and two weeks demonstrate the utility of the material as a functional bioink for muscle engineering. In this work, muscle tissue is 3D‐bioprinted with a novel bioink formulation. The bioink presents fibrous bioactive properties of the body's native scaffold, while also improving biofabrication outcomes. Self‐assembling peptides are combined with GelMA creating a hybrid bioink. This work sets the stage for future hybrid bioinks for muscle biofabrication

    In vitro growth and differentiation of primary myoblasts on thiophene based conducting polymers

    Get PDF
    Polythiophenes are attractive candidate polymers for use in synthetic cell scaffolds as they are amenable to modification of functional groups as a means by which to increase biocompatibility. In the current study we analysed the physical properties and response of primary myoblasts to three thiophene polymers synthesized from either a basic bithiophene monomer or from one of two different thiophene monomers with alkoxy functional groups. In addition, the effect of the dopants pTS- and ClO4 - was investigated. In general, it was found that pTS- doped polymers were significantly smoother and tended to be more hydrophilic than their ClO 4 - doped counterparts, demonstrating that the choice of dopant significantly affects the polythiophene physical properties. These properties had a significant effect on the response of primary myoblasts to the polymer surfaces; LDH activity measured from cells harvested at 24 and 48 h post-seeding revealed significant differences between numbers of cells attaching to the different thiophene polymers, whilst all of the polymers equally supported cell doubling over the 48 h period. Differences in morphology were also observed, with reduced cell spreading observed on polymers with alkoxy groups. In addition, significant differences were seen in the polymers\u27 ability to support myoblast fusion. In general pTS- doped polymers were better able to support fusion than their ClO4 - doped counterparts. These studies demonstrate that modification of thiophene polymers can be used to promote specific cellular response (e.g. proliferation over differentiation) without the use of biological agents. 2013 The Royal Society of Chemistry

    Wet-Spun Trojan Horse Cell Constructs for Engineering Muscle

    Get PDF
    Engineering of 3D regenerative skeletal muscle tissue constructs (skMTCs) using hydrogels containing muscle precursor cells (MPCs) is of potential benefit for repairing Volumetric Muscle Loss (VML) arising from trauma (e.g., road/industrial accident, war injury) or for restoration of functional muscle mass in disease (e.g., Muscular Dystrophy, muscle atrophy). Additive Biofabrication (AdBiofab) technologies make possible fabrication of 3D regenerative skMTCs that can be tailored to specific delivery requirements of VML or functional muscle restoration. Whilst 3D printing is useful for printing constructs of many tissue types, the necessity of a balanced compromise between cell type, required construct size and material/fabrication process cyto-compatibility can make the choice of 3D printing a secondary alternative to other biofabrication methods such as wet-spinning. Alternatively, wet-spinning is more amenable to formation of fibers rather than (small) layered 3D-Printed constructs. This study describes the fabrication of biosynthetic alginate fibers containing MPCs and their use for delivery of dystrophin-expressing cells to dystrophic muscle in the mdx mouse model of Duchenne Muscular Dystrophy (DMD) compared to poly(DL-lactic-co-glycolic acid) copolymer (PLA:PLGA) topically-seeded with myoblasts. In addition, this study introduces a novel method by which to create 3D layered wet-spun alginate skMTCs for bulk mass delivery of MPCs to VML lesions. As such, this work introduces the concept of “Trojan Horse” Fiber MTCs (TH-fMTCs) and 3d Mesh-MTCs (TH-mMTCs) for delivery of regenerative MPCs to diseased and damaged muscle, respectively

    Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair

    Get PDF
    Three-dimensional (3D) bioprinting is driving major innovations in the area of cartilage tissue engineering. Extrusion-based 3D bioprinting necessitates a phase change from a liquid bioink to a semi-solid crosslinked network achieved by a photo-initiated free radical polymerization reaction that is known to be cytotoxic. Therefore, the choice of the photocuring conditions has to be carefully addressed to generate a structure stiff enough to withstand the forces phisiologically applied on articular cartilage, while ensuring adequate cell survival for functional chondral repair. We recently developed a handheld 3D printer called Biopen . To progress towards translating this freeform biofabrication tool into clinical practice, we aimed to define the ideal bioprinting conditions that would deliver a scaffold with high cell viability and structural stiffness relevant for chondral repair. To fulfill those criteria, free radical cytotoxicity was confined by a co-axial Core/Shell separation. This system allowed the generation of Core/Shell GelMa/HAMa bioscaffolds with stiffness of 200KPa, achieved after only 10seconds of exposure to 700mW/cm2 of 365nm UV-A, containing \u3e90% viable stem cells that retained proliferative capacity. Overall, the Core/Shell handheld 3D bioprinting strategy enabled rapid generation of high modulus bioscaffolds with high cell viability, with potential for in situ surgical cartilage engineering

    Precision wet-spinning of cell-impregnated alginate fibres for tissue engineering

    Get PDF
    The selective assembly of functionalised fibres produced by wet-spinning into implantable three dimensional contructs presents attractive prospects for the field of medical bionics[1]. In particular, the incorporation of biological factors and large numbers of cells within biocompatible and macroporous fibres is expected to deliver improvements to drug delivery platforms as well as to tissue engineering biotechnology[2, 3]

    Efficacy testing as a primary purpose of phase 1 clinical trials: is it applicable to first-in-human bionics and optogenetics trials?

    No full text
    In her article, Pascale Hess raises the issue of whether her proposed modelmay be extrapolated and applied to clinical research fields other than stem cell-based interventions in the brain (SCBI-B) (Hess 2012). Broadly summarized, Hess\u27s model suggests prioritizing efficacy over safety in phase 1 trials involving irreversible interventions in the brain, when clinical criteria meet the appropriate population suffering from degenerative brain diseases (Hess 2012). Although there is a need to reconsider the traditional phase 1 model, especially with respect to first-in-human clinical trials involving novel technologies, the question arises as to whether it is appropriate to advocate for a new model that prioritizes efficacy over safety across all phase 1 clini- cal research trials involving irreversible interventions in the brain

    Influence of biopolymer loading on the physiochemical and electrochemical properties of inherently conducting polymer biomaterials

    Get PDF
    The physicochemical and electrochemical properties of polypyrrole (PPy) doped with the biological dopant dextran sulphate (DS) were shown to be significantly altered as a function of varying the salt concentration (0.2, 2 or 20 mg/ml) in the polymerisation electrolyte. Films grown in the presence of 0.2 mg/ml DS generated the highest potential during galvanostatic growth, with the potential decreasing with each subsequent increase in DS concentration. The electroactivity of the polymers was similar for all three DS concentrations, with the 20 mg/ml film drawing slightly more current upon reduction in PBS. Increasing the DS concentration reduced film interfacial roughness and increased polymer hydrophilicity. Polymer mass and thickness was larger for DS films grown from 0.2 mg/ml and 2 mg/ml DS electrolyte solutions, compared to the 20 mg/ml films. The latter also demonstrated a much higher shear modulus than the 2 mg/ml and 0.2 mg/ml films, respectively. The changes in the polymer physicochemical properties were associated with an increase in polymer densification with increasing DS loading, correlating with a likely higher conjugation generated during polymerisation at a potential closer to the ideal oxidation potential of pyrrole. Herein we describe a facile approach through which polymer properties may be varied significantly by varying the dopant concentration in the electrolyte, providing the ability to tune polymer properties for enhanced functionality while preserving fundamental polymer chemistry
    • …
    corecore