9 research outputs found

    Structure, toxicity and antibiotic activity of gramicidin S and derivatives

    Get PDF
    Development of new antibiotics is declining whereas antibiotic resistance is rising, heralding a post-antibiotic era. Antimicrobial peptides such as gramicidin S (GS), exclusively topically used due to its hemolytic side-effect, could still be interesting as therapeutic compounds. By modifying the amino-acid composition of GS, we synthesized GS analogues. We now show that derivative VK7 has a lower MIC (7.8–31.2 μg/ml, median 15.6 μg/ml) against strains of multi-drug resistant (MDR) Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa than GS has (3.9–62.5 μg/ml, median 31.3 μg/ml). Low MICs for both VK7 and GS were observed for Staphylococcus aureus and Enterococcus faecium

    Bis-pyridylethenyl benzene as novel backbone for amyloid-β binding compounds

    No full text
    Detection of cerebral β-amyloid (Aβ) by targeted contrast agents is of great interest for in vivo diagnosis of Alzheimer's disease (AD). Partly because of their planar structure several bis-styrylbenzenes have been previously reported as potential Aβ imaging agents. However, these compounds are relatively hydrophobic, which likely limits their in vivo potential. Based on their structures, we hypothesized that less hydrophobic bis-pyridylethenylbenzenes may also label amyloid. We synthesized several bis-pyridylethenylbenzenes and tested whether these compounds indeed display improved solubility and lower LogP values, and studied their fluorescent properties and Aβ binding characteristics. Bis-pyridylethenylbenzenes showed a clear affinity for Aβ plaques on both human and murine AD brain sections. Competitive binding experiments suggested a different binding site than Chrysamine G, a well-known stain for amyloid. With a LogP value between 3 and 5, most bis-pyridylethenylbenzenes were able to enter the brain and label murine amyloid in vivo with the bis(4-pyridylethenyl)benzenes showing the most favorable characteristics. In conclusion, the presented results suggest that bis-pyridylethenylbenzene may serve as a novel backbone for amyloid imaging agents

    The Lipophilic Bullet Hits the Targets: Medicinal Chemistry of Adamantane Derivatives

    No full text
    corecore