64 research outputs found

    Breast cancer and childhood anthropometry: emerging hypotheses?

    Get PDF
    In this issue of Breast Cancer Research, Baer and colleagues report a strong protective effect of childhood and adolescent body fatness on premenopausal breast cancer risk based on a large prospective study. Methodological issues are discussed, as are tentative biological interpretations regarding the findings

    Body mass index and height over three generations: evidence from the Lifeways cross-generational cohort study

    Get PDF
    Background: Obesity and its measure of body mass index are strongly determined by parental body size. Debate continues as to whether both parents contribute equally to offspring body mass which is key to understanding the aetiology of the disease. The aim of this study was to use cohort data from three generations of one family to examine the relative maternal and paternal associations with offspring body mass index and how these associations compare with family height to demonstrate evidence of genetic or environmental cross-generational transmission. Methods: 669 of 1082 families were followed up in 2007/8 as part of the Lifeways study, a prospective observational cross-generation linkage cohort. Height and weight were measured in 529 Irish children aged 5 to 7 years and were self-reported by parents and grandparents. All adults provided information on self-rated health, education status, and indicators of income, diet and physical activity. Associations between the weight, height, and body mass index of family members were examined with mixed models and heritability estimates computed using linear regression analysis. Results: Self-rated health was associated with lower BMI for all family members, as was age for children. When these effects were accounted for evidence of familial associations of BMI from one generation to the next was more apparent in the maternal line. Heritability estimates were higher (h2 = 0.40) for mother-offspring pairs compared to father-offspring pairs (h2 = 0.22). In the previous generation, estimates were higher between mothersparents (h2 = 0.54-0.60) but not between fathers-parents (h2 = -0.04-0.17). Correlations between mother and offspring across two generations remained significant when modelled with fixed variables of socioeconomic status, health, and lifestyle. A similar analysis of height showed strong familial associations from maternal and paternal lines across each generation. Conclusions: This is the first family cohort study to report an enduring association between mother and offspring BMI over three generations. The evidence of BMI transmission over three generations through the maternal line in an observational study corroborates the findings of animal studies. A more detailed analysis of geno and phenotypic data over three generations is warranted to understand the nature of this maternal-offspring relationship.TS 24.4.1

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans

    Selective laser trabeculoplasty: past, present, and future

    Get PDF
    Over the past two decades, selective laser trabeculoplasty (SLT) has increasingly become an established laser treatment used to lower intraocular pressure in open-angle glaucoma and ocular hypertensive patients. In this review we trace the origins of SLT from previous argon laser trabeculoplasty and review the current role it has in clinical practice. We outline future directions of SLT research and introduce emerging technologies that are further developing this intervention in the treatment paradigm of glaucoma.Eye advance online publication, 5 January 2018; doi:10.1038/eye.2017.273
    corecore