2,279 research outputs found
Glucose enhancement of memory is modulated by trait anxiety in healthy adolescent males
Glucose administration is associated with memory enhancement in healthy young individuals under conditions of divided attention at encoding. While the specific neurocognitive mechanisms underlying this ‘glucose memory facilitation effect’ are currently uncertain, it is thought that individual differences in glucoregulatory efficiency may alter an individual’s sensitivity to the glucose memory facilitation effect. In the present study, we sought to investigate whether basal hypothalamic–pituitary–adrenal axis function (itself a modulator of glucoregulatory efficiency), baseline self-reported stress and trait anxiety influence the glucose memory facilitation effect. Adolescent males (age range = 14–17 years) were administered glucose and placebo prior to completing a verbal episodic memory task on two separate testing days in a counter-balanced, within-subjects design. Glucose ingestion improved verbal episodic memory performance when memory recall was tested (i) within an hour of glucose ingestion and encoding, and (ii) one week subsequent to glucose ingestion and encoding. Basal hypothalamic–pituitary–adrenal axis function did not appear to influence the glucose memory facilitation effect; however, glucose ingestion only improved memory in participants reporting relatively higher trait anxiety. These findings suggest that the glucose memory facilitation effect may be mediated by biological mechanisms associated with trait anxiety
D-brane Inspired Fermion Mass Textures
In this paper, the issues of the quark mass hierarchies and the Cabbibo
Kobayashi Maskawa mixing are analyzed in a class of intersecting D-brane
configurations with Standard Model gauge symmetry. The relevant mass matrices
are constructed taking into account the constraints imposed by extra abelian
symmetries and anomaly cancelation conditions. Possible mass generating
mechanisms including perturbative as well as non-perturbative effects are
discussed and specific patterns of mass textures are found characterized by the
hierarchies of the scales where the various sources contribute. It is argued
that the Cholesky decomposition of the mass matrices is the most appropriate
way to determine the properties of these fermion mass patterns, while the
associated triangular mass matrix form provides a unified description of all
phenomenologically equivalent symmetric and non-symmetric mass matrices. An
elegant analytic formula is derived for the Cholesky triangular form of the
mass matrices where the entries are given as simple functions of the mass
eigenstates and the diagonalizing transformation entries. Finally, motivated by
the possibility of vanishing zero Yukawa mass entries in several D-brane and
F-theory constructions due to the geometry of the internal space, we analyse in
detail all possible texture-zeroes mass matrices within the proposed new
context. These new texture-zeroes are compared to those existing in the
literature while D-brane inspired cases are worked out in detail.Comment: 58 pages, 7 figure
FCNC Effects in a Minimal Theory of Fermion Masses
As a minimal theory of fermion masses we extend the SM by heavy vectorlike
fermions, with flavor-anarchical Yukawa couplings, that mix with chiral
fermions such that small SM Yukawa couplings arise from small mixing angles.
This model can be regarded as an effective description of the fermionic sector
of a large class of existing flavor models and thus might serve as a useful
reference frame for a further understanding of flavor hierarchies in the SM.
Already such a minimal framework gives rise to FCNC effects through exchange of
massive SM bosons whose couplings to the light fermions get modified by the
mixing. We derive general formulae for these corrections and discuss the bounds
on the heavy fermion masses. Particularly stringent bounds, in a few TeV range,
come from the corrections to the Z couplings.Comment: 19 pages, 1 figur
Flavor in Minimal Conformal Technicolor
We construct a complete, realistic, and natural UV completion of minimal
conformal technicolor that explains the origin of quark and lepton masses and
mixing angles. As in "bosonic technicolor", we embed conformal technicolor in a
supersymmetric theory, with supersymmetry broken at a high scale. The exchange
of heavy scalar doublets generates higher-dimension interactions between
technifermions and quarks and leptons that give rise to quark and lepton masses
at the TeV scale. Obtaining a sufficiently large top quark mass requires strong
dynamics at the supersymmetry breaking scale in both the top and technicolor
sectors. This is natural if the theory above the supersymmetry breaking also
has strong conformal dynamics. We present two models in which the strong top
dynamics is realized in different ways. In both models, constraints from
flavor-changing effects can be easily satisfied. The effective theory below the
supersymmetry breaking scale is minimal conformal technicolor with an
additional light technicolor gaugino. We argue that this light gaugino is a
general consequence of conformal technicolor embedded into a supersymmetric
theory. If the gaugino has mass below the TeV scale it will give rise to an
additional pseudo Nambu-Goldstone boson that is observable at the LHC.Comment: 37 pages; references adde
Intraspecfic variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp petraea
Atmospheric temperature is a key factor in determining the distribution of a plant species. Alongside this, plant populations growing at the margin of their range may exhibit traits that indicate genetic differentiation and adaptation to their local abiotic environment. We investigated whether geographically separated marginal populations of Arabidopsis lyrata ssp. petraea have distinct metabolic phenotypes associated with exposure to cold temperatures. Seeds of A. petraea were obtained from populations along a latitudinal gradient, namely Wales, Sweden and Iceland and grown in a controlled cabinet environment. Mannose, glucose, fructose, sucrose and raffinose concentrations were different between cold treatments and populations, especially in the Welsh population, but polyhydric alcohol concentrations were not. The free amino acid compositions were population specific, with fold differences in most amino acids, especially in the Icelandic populations, with gross changes in amino acids, particularly those associated with glutamine metabolism. Metabolic fingerprints and profiles were obtained. Principal component analysis (PCA) of metabolite fingerprints revealed metabolic characteristic phenotypes for each population and temperature. It is suggested that amino acids and carbohydrates were responsible for discriminating populations within the PCA. Metabolite fingerprinting and profiling has proved to be sufficiently sensitive to identify metabolic differences between plant populations at different atmospheric temperatures. These findings show that there is significant natural variation in cold metabolism among populations of A. l. petraea which may signify plant adaptation to local climates
RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions
New Experimental Limits on Macroscopic Forces Below 100 Microns
Results of an experimental search for new macroscopic forces with Yukawa
range between 5 and 500 microns are presented. The experiment uses 1 kHz
mechanical oscillators as test masses with a stiff conducting shield between
them to suppress backgrounds. No signal is observed above the instrumental
thermal noise after 22 hours of integration time. These results provide the
strongest limits to date between 10 and 100 microns, improve on previous limits
by as much as three orders of magnitude, and rule out half of the remaining
parameter space for predictions of string-inspired models with low-energy
supersymmetry breaking. New forces of four times gravitational strength or
greater are excluded at the 95% confidence level for interaction ranges between
200 and 500 microns.Comment: 25 Pages, 7 Figures: Minor Correction
Flavourful Production at Hadron Colliders
We ask what new states may lie at or below the TeV scale, with sizable
flavour-dependent couplings to light quarks, putting them within reach of
hadron colliders via resonant production, or in association with Standard Model
states. In particular, we focus on the compatibility of such states with
stringent flavour-changing neutral current and electric-dipole moment
constraints. We argue that the broadest and most theoretically plausible
flavour structure of the new couplings is that they are hierarchical, as are
Standard Model Yukawa couplings, although the hierarchical pattern may well be
different. We point out that, without the need for any more elaborate or
restrictive structure, new scalars with "diquark" couplings to standard quarks
are particularly immune to existing constraints, and that such scalars may
arise within a variety of theoretical paradigms. In particular, there can be
substantial couplings to a pair of light quarks or to one light and one heavy
quark. For example, the latter possibility may provide a flavour-safe
interpretation of the asymmetry in top quark production observed at the
Tevatron. We thereby motivate searches for diquark scalars at the Tevatron and
LHC, and argue that their discovery represents one of our best chances for new
insight into the Flavour Puzzle of the Standard Model.Comment: 18 pp., 8 figures, references adde
Minimal Conformal Technicolor and Precision Electroweak Tests
We study the minimal model of conformal technicolor, an SU(2) gauge theory
near a strongly coupled conformal fixed point, with conformal symmetry softly
broken by technifermion mass terms. Conformal symmetry breaking triggers chiral
symmetry breaking in the pattern SU(4) -> Sp(4), which gives rise to a
pseudo-Nambu-Goldstone boson that can act as a composite Higgs boson. The top
quark is elementary, and the top and electroweak gauge loop contributions to
the Higgs mass are cut off entirely by Higgs compositeness. In particular, the
model requires no top partners and no "little Higgs" mechanism. A nontrivial
vacuum alignment results from the interplay of the top loop and technifermion
mass terms. The composite Higgs mass is completely determined by the top loop,
in the sense that m_h/m_t is independent of the vacuum alignment and is
computable by a strong-coupling calculation. There is an additional composite
pseudoscalar A with mass larger than m_h and suppressed direct production at
LHC. We discuss the electroweak fit in this model in detail. Corrections to Z
-> bb and the T parameter from the top sector are suppressed by the enhanced
Sp(4) custodial symmetry. Even assuming that the strong contribution to the S
parameter is positive and usuppressed, a good electroweak fit can be obtained
for v/f ~ 0.25, where v and f are the electroweak and chiral symmetry breaking
scales respectively. This requires fine tuning at the 10% level.Comment: 34 pages, 4 figures; v2: updated precision electroweak fi
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …
