2,006 research outputs found

    Lattice calculation for unitary fermions in a finite box

    Get PDF
    A fundamental constant in systems of unitary fermions is the so-called Bertsch parameter, the ratio of the ground state energy for spin paired unitary fermions to that for free fermions at the same density. I discuss how we computed this parameter as well as the pairing gap using a recently developed lattice construction for unitary fermions, by measuring correlation functions for up to 38 fermions in a finite box. Our calculation illustrates interesting issues facing the study of many-body states on the lattice, which may eventually be confronted in QCD calculations as well.Comment: 7 pages, 6 figures, The XXVIII International Symposium on Lattice Field Theory, Lattice2010, June 14-19, 2010, Villasimius, Ital

    Lattice study of trapped fermions at unitarity

    Get PDF
    We present a lattice study of up to N=20 unitary fermions confined to a harmonic trap. Our preliminary results show better than 1% agreement with high precision solutions to the many-body Schrodinger equation for up to N=6. We are able to make predictions for larger N which were inaccessible by the Hamiltonian approach due to computational limitations. Harmonic traps are used experimentally to study cold atoms tuned to a Feshbach resonance. We show that they also provide certain benefits to numerical studies of many-body correlators on the lattice. In particular, we anticipate that the methods described here could be used for studying nuclear physics.Comment: 7 pages, 5 figures, presented at the XXVIII International Symposium on Lattice Field Theory (Lattice 2010), Villasimius, Italy, June 14-19 201

    Lattice Monte Carlo calculations for unitary fermions in a finite box

    Get PDF
    We perform lattice Monte Carlo simulations for up to 66 unitary fermions in a finite box using a highly improved lattice action for nonrelativistic spin 1/2 fermions. We obtain a value of 0.3660.011+0.0160.366^{+0.016}_{-0.011} for the Bertsch parameter, defined as the energy of the unitary Fermi gas measured in units of the free gas energy in the thermodynamic limit. In addition, for up to four unitary fermions, we compute the spectrum of the lattice theory by exact diagonalization of the transfer matrix projected onto irreducible representations of the octahedral group for small to moderate size lattices, providing an independent check of our few-body simulation results. We compare our exact numerical and simulation results for the spectrum to benchmark studies of other research groups, as well as perform an extended analysis of our lattice action improvement scheme, including an analysis of the errors associated with higher partial waves and finite temporal discretization.Comment: Significant revisions from previous version. Included data at a larger volume and performed an infinite volume extrapolation of the Bertsch parameter. Published versio

    Lattice Monte Carlo calculations for unitary fermions in a harmonic trap

    Get PDF
    We present a new lattice Monte Carlo approach developed for studying large numbers of strongly interacting nonrelativistic fermions, and apply it to a dilute gas of unitary fermions confined to a harmonic trap. Our lattice action is highly improved, with sources of discretization and finite volume errors systematically removed; we are able to demonstrate the expected volume scaling of energy levels of two and three untrapped fermions, and to reproduce the high precision calculations published previously for the ground state energies for N = 3 unitary fermions in a box (to within our 0.3% uncertainty), and for N = 3, . . ., 6 unitary fermions in a harmonic trap (to within our ~ 1% uncertainty). We use this action to determine the ground state energies of up to 70 unpolarized fermions trapped in a harmonic potential on a lattice as large as 64^3 x 72; our approach avoids the use of importance sampling or calculation of a fermion determinant and employs a novel statistical method for estimating observables, allowing us to generate ensembles as large as 10^8 while requiring only relatively modest computational resources.Comment: 48 pages, 19 figures, published version, some text revised, typos corrected, title changed in journal; previously "Unitary fermions on the lattice I: in a harmonic trap

    Extended study for unitary fermions on a lattice using the cumulant expansion technique

    Get PDF
    A recently developed lattice method for large numbers of strongly interacting nonrelativistic fermions exhibits a heavy tail in the distributions of correlators for large Euclidean time {\tau} and large number of fermions N, which only allows the measurement of ground state energies for a limited number of fermions using standard techniques. In such cases, it is suggested that measuring the log of the correlator is more efficient, and a cumulant expansion of this quantity can be exactly related to the correlation function. The cumulant expansion technique allows us to determine the ground state energies of up to 66 unpolarized unitary fermions on lattices as large as 72×\times14^3, and up to 70 unpolarized unitary fermions trapped in a harmonic potential on lattices as large as 72×\times64^3. We have also improved our lattice action with a Galilean invariant form for the four-fermion interaction, which results in predictive volume scaling of the lowest energy of three fermions in a periodic box and in good agreement of our results for N \leq 6 trapped unitary fermions with those from other benchmark calculations.Comment: 7 pages, 6 figures, Presented at 29th International Symposium on Lattice Field Theory (Lattice2011), Squaw Valley, Lake Tahoe, CA, USA, 10-16 July 201

    The Chemical Compositions of Very Metal-Poor Stars HD 122563 and HD 140283; A View From the Infrared

    Full text link
    From high resolution (R = 45,000), high signal-to-noise (S/N > 400) spectra gathered with the Immersion Grating Infrared Spectrograph (IGRINS) in the H and K photometric bands, we have derived elemental abundances of two bright, well-known metal-poor halo stars: the red giant HD 122563 and the subgiant HD 140283. Since these stars have metallicities approaching [Fe/H] = -3, their absorption features are generally very weak. Neutral-species lines of Mg, Si, S and Ca are detectable, as well as those of the light odd-Z elements Na and Al. The derived IR-based abundances agree with those obtained from optical-wavelength spectra. For Mg and Si the abundances from the infrared transitions are improvements to those derived from shorter wavelength data. Many useful OH and CO lines can be detected in the IGRINS HD 122563 spectrum, from which derived O and C abundances are consistent to those obtained from the traditional [O I] and CH features. IGRINS high resolutions H- and K-band spectroscopy offers promising ways to determine more reliable abundances for additional metal-poor stars whose optical features are either not detectable, or too weak, or are based on lines with analytical difficulties.Comment: Accepted for publication in ApJ (28 pages, 4 tables, 6 figures

    Noise, sign problems, and statistics

    Get PDF
    We show how sign problems in simulations of many-body systems can manifest themselves in the form of heavy-tailed correlator distributions, similar to what is seen in electron propagation through disordered media. We propose an alternative statistical approach for extracting ground state energies in such systems, illustrating the method with a toy model and with lattice data for unitary fermions.Comment: 4 pages, 4 figure

    Supergravity at Colliders

    Full text link
    We consider supersymmetric theories where the gravitino is the lightest superparticle (LSP). Assuming that the long-lived next-to-lightest superparticle (NSP) is a charged slepton, we investigate two complementary ways to prove the existence of supergravity in nature. The first is based on the NSP lifetime which in supergravity depends only on the Planck scale and the NSP and gravitino masses. With the gravitino mass inferred from kinematics, the measurement of the NSP lifetime will test an unequivocal prediction of supergravity. The second way makes use of the 3-body NSP decay. The angular and energy distributions and the polarizations of the final state photon and lepton carry the information on the spin of the gravitino and on its couplings to matter and radiation.Comment: 13 pages, 11 figures; v2: 3 references added, to appear in Physics Letters
    corecore